|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Table of Contents
# a) R0 I$ f+ C( F% l$ AAudience ............................................................................................. iii
+ Z: t! l$ z2 g7 iRelated Documents ............................................................................. iii4 T" Q9 Y/ j5 \/ O3 [4 p
Conventions ........................................................................................ iv7 B V$ x0 ], Z
Obtaining Customer Support .............................................................. vi- n. }' H9 t' E) y! p1 g4 X
Other Sources of Information ............................................................ vii$ H0 U: t" B* k" g5 _. Z' F. a" v4 M
Revision History ............................................................................... viii+ H4 y" Z( b- u; i, ~2 Y4 Z# Q; [
Chapter 1 - Overview of Models ..................................................................... 1-1/ i% q8 z# s$ V$ j
Using Models to Define Netlist Elements .............................................. 1-2
+ q! X* V& r6 X, J0 a8 @Supported Models for Specific Simulators ....................................... 1-2
2 f& p0 f( z1 qSelecting Models .............................................................................. 1-3) a5 B r% _# G0 X% K& Y# d* l+ P8 }
Example ............................................................................................ 1-33 n1 T: v. k# z+ t0 J! o+ w
Chapter 2 - Using Passive Device Models....................................................... 2-1
% l5 f! \/ M. D3 DResistor Device Model and Equations .................................................... 2-2+ _' b7 H; q" ?8 y: {6 F" R+ J
Wire RC Model ................................................................................. 2-23 E2 y1 `$ v* X$ n5 ~
Resistor Model Equations ................................................................. 2-5
" v# _6 G0 X: {# @% M2 }1 QCapacitor Device Model and Equations ............................................... 2-10. y" R$ o! j. G
Capacitance Model ......................................................................... 2-10# Z0 f) Z0 L0 L) ]5 g2 h- z! k
Capacitor Device Equations ........................................................... 2-11
% r" i0 E" t0 v$ _7 c6 gInductor Device Model and Equations ................................................. 2-14
# m( b8 ^2 _# P$ A, \Inductor Core Models ..................................................................... 2-15" j$ g+ G7 |6 ?7 F6 [, k/ J$ P
Magnetic Core Element Outputs .................................................... 2-18# T$ E8 ]8 P! t) x
Inductor Device Equations ............................................................. 2-193 q3 O6 O& |% N& Z4 m
Jiles-Atherton Ferromagnetic Core Model ..................................... 2-21
* `* V, D: }+ z, a$ Z2 V5 [7 V. IPower Sources ....................................................................................... 2-30
5 S; c! [: |2 g, kIndependent Sources ....................................................................... 2-30
# x0 {( M; S# Q' s. |9 ZControlled Sources .......................................................................... 2-33" b- ]& k3 b5 i# _3 M
Chapter 3 - Using Diodes ................................................................................. 3-1
7 O; U/ H. Y6 sDiode Types ............................................................................................ 3-2/ A/ @' ]! ], _: M, }3 j0 {- `
Using Diode Model Statements .............................................................. 3-3
- ]2 n) l' f: h1 \Setting Control Options .................................................................... 3-3
8 X) j; K0 L' i J) G3 K nSpecifying Junction Diode Models ......................................................... 3-5/ z+ Q u+ E/ y( H Q2 X) u$ }
Using the Junction Model Statement ................................................ 3-6
; }% [; e5 `0 l# i( E% fUsing Junction Model Parameters .................................................... 3-7+ a' e) K1 A2 Q/ a4 a
Geometric Scaling for Diode Models ............................................. 3-13& H/ k2 D0 s/ G
Defining Diode Models ................................................................... 3-15) G% Q; g: @2 O# m- I+ L" c1 T
Determining Temperature Effects on Junction Diodes ................... 3-187 Z2 d7 \8 [8 e; f' g# f
Using Junction Diode Equations ........................................................... 3-213 Z2 T* ^2 T+ f# E9 ?+ ^( @; u$ A
Using Junction DC Equations ......................................................... 3-22
1 l; }% i. k+ tUsing Diode Capacitance Equations ............................................... 3-25
9 {, Q3 C& U8 n, E0 XUsing Noise Equations .................................................................... 3-27# d; e" g; \! c0 p
Temperature Compensation Equations ........................................... 3-28
/ [, I C6 {# a: XUsing the Junction Cap Model .............................................................. 3-32
" {, g3 ]+ o* ?0 l5 X8 `6 W- fSetting Juncap Model Parameters ................................................... 3-33/ Q& z7 f" R; ?6 x$ u0 P1 F
Theory ............................................................................................. 3-33
4 l. `* l# Y' t! pJUNCAP Model Equations ............................................................. 3-38 S: o7 W& s5 E
Using the Fowler-Nordheim Diode ...................................................... 3-46
" i! M, m; n2 E! K; }Converting National Semiconductor Models ........................................ 3-48% A4 @3 z' N- _2 t; D1 o5 L
Chapter 4 - Using BJT Models ........................................................................ 4-18 E4 ]/ @- _2 W1 [4 Y. X
Using BJT Models .................................................................................. 4-2
7 V l5 a/ A: q" j' ]Selecting Models ............................................................................... 4-2/ `: c! B* K/ I4 Z& J% A& S8 y" F
BJT Model Statement ............................................................................. 4-4
2 k0 V; @/ F5 q1 O, P6 O- UUsing BJT Basic Model Parameters ................................................. 4-5
2 k" a5 j5 f' b. sHandling BJT Model Temperature Effects ..................................... 4-15( H+ s5 r. |# J- ]9 ^
BJT Device Equivalent Circuits ............................................................ 4-21
7 n9 }+ T. s8 a8 `9 cScaling ............................................................................................. 4-21) `4 `. J9 C. O$ F( _0 E9 c1 M
Understanding the BJT Current Convention ................................... 4-21
J5 y! Y6 p7 \& {: JUsing BJT Equivalent Circuits ....................................................... 4-22" l! L9 S& q( q3 E$ y$ f/ t% k* K
BJT Model Equations (NPN and PNP) ................................................. 4-30
: i( G" o5 s, l% LUnderstanding Transistor Geometry in Substrate Diodes .............. 4-30
% p _, F: l( E! g: r% DUsing DC Model Equations ............................................................ 4-320 Z4 h V! w& x% ^
Using Substrate Current Equations ................................................. 4-33* c0 ~$ N J2 T: v" C* J' i
Using Base Charge Equations ......................................................... 4-34
) }$ p4 X, S- l8 EUsing Variable Base Resistance Equations .................................... 4-35
# S$ S7 q+ U7 H7 ?$ jUsing BJT Capacitance Equations ........................................................ 4-36: d/ h! D! y% z G* O
Using Base-Emitter Capacitance Equations ................................... 4-36
3 B3 y& g% m/ l+ ^1 |1 \Determining Base Collector Capacitance ....................................... 4-38# `( g; n& y0 t: j0 F: j I# J% N
Using Substrate Capacitance ........................................................... 4-40# g3 p: N: z! V+ k2 B/ J
Defining BJT Noise Equations ............................................................. 4-42( [8 v& L( H! C y" _9 ]
BJT Temperature Compensation Equations ......................................... 4-44, _* x; m3 n8 S, P) p
Using Energy Gap Temperature Equations .................................... 4-44 O; _7 b% @# {! q6 R
Saturation and Beta Temperature Equations, TLEV=0 or 2 ........... 4-44
6 ^' X9 t2 |* ?8 M2 S7 [8 TUsing Saturation and Temperature Equations, TLEV=1 ................ 4-46
- ], l4 T+ y1 m1 ~Using Saturation Temperature Equations, TLEV=3 ....................... 4-47& ^8 B6 T& N6 E& R; n" m
Using Capacitance Temperature Equations .................................... 4-49 A# ]. O, W/ j0 E, l
Parasitic Resistor Temperature Equations ...................................... 4-51" J) z! q3 y+ `
Using BJT Level=2 Temperature Equations .................................. 4-52
* G2 d3 ~+ h7 H" ^0 H* ^* KBJT Quasi-Saturation Model ................................................................ 4-534 `3 F) O: q8 d% T6 S9 Z7 L. t
Using Epitaxial Current Source Iepi ............................................... 4-55
1 O7 A' q# T9 c* ?, LEpitaxial Charge Storage Elements Ci and Cx ............................... 4-552 o# v' q+ m7 n8 j
Converting National Semiconductor Models ........................................ 4-580 L! U5 A1 v7 y1 b/ N
VBIC Bipolar Transistor Model ........................................................... 4-609 S6 }' o- B$ d9 ]9 g6 W+ }
Understanding the History of VBIC ............................................... 4-608 D3 F" j y6 ~: w- H. Q: ~
VBIC Parameters ............................................................................ 4-61# N! C9 s- g+ b l! x
Noise Analysis ................................................................................ 4-62) h! ?; u" j( T- D; U* p. i5 q9 ]3 s
Level 6 Philips Bipolar Model (MEXTRAM Level 503) ..................... 4-71
' I0 N5 M- l: R/ b3 N. ]Level 6 Element Syntax .................................................................. 4-71# B8 [& ?- [% l: {5 @0 I/ o0 @0 x
Level 6 Model Parameters .............................................................. 4-72+ Y6 H( Q9 S* {" `' _ W8 }
Level 6 Philips Bipolar Model (MEXTRAM Level 504) ..................... 4-78
& Y& W* S: T; Y3 f3 @Notes ............................................................................................... 4-79
% H7 h+ W0 T; V3 |) BLevel 6 Model Parameters (504) ..................................................... 4-80
4 p# I# O& I1 W6 c) b4 ]Level 8 HiCUM Model ......................................................................... 4-94! C' k% m k$ v4 x
What is the HiCUM Model? ........................................................... 4-94
* r5 o+ V9 [' k hHiCUM Model Advantages ............................................................ 4-94* o$ S7 g. T: A1 O/ l' _
Avant! HiCUM Model vs. Public HiCUM Model .......................... 4-963 q3 d) n( M, f, D
Model Implementation .................................................................... 4-96, N1 Y i/ r1 t7 Z# E
Internal Transistors ......................................................................... 4-97
. _8 S3 S/ R {Level 9 VBIC99 Model ...................................................................... 4-110: K" P% a- F4 u( z- [
Element Syntax of BJT Level 9 .................................................... 4-110! `; w, W, R3 ~' a) T3 K3 u
Effects of VBIC99 ........................................................................ 4-112
8 o1 N% m& v% ]( {2 HModel Implementation .................................................................. 4-112
; ^9 v7 _- ]: q0 ]8 FExample ........................................................................................ 4-119
5 T7 _& ]; X4 }' r0 hVBIC99 Notes for HSPICE Users ................................................ 4-1232 W$ _0 r3 A. X- r* d
Level 10 Phillips MODELLA Bipolar Model .................................... 4-1242 f, R5 ~5 |, B6 v9 J
Model Parameters ......................................................................... 4-1249 d# I8 n4 O2 q/ `& @) U6 I
Equivalent Circuits ........................................................................ 4-1294 g4 O# ~* r) j, y
DC Operating Point Output .......................................................... 4-131
2 g8 | N3 }' ~. g+ V/ SModel Equations ........................................................................... 4-132
6 {9 _5 l* M) ~! ~) R& QTemperature Dependence of the Parameters ................................ 4-1426 S( Z! e7 M* E. n6 W0 h
Level 11 UCSD HBT Model .............................................................. 4-146. @$ {; x2 D C7 m! g
Using the UCSD HBT Model ....................................................... 4-1463 R0 h2 h3 o! T; p& ^6 ]
Description of Parameters ............................................................. 4-147, |7 V0 Y) D4 W7 h' O* `+ R2 V& K* K" x
Model Equations ........................................................................... 4-152
. Y7 r5 y8 ^6 B3 F; UEquivalent Circuit ......................................................................... 4-1633 l) r1 n$ c0 D
Example Avant! True-Hspice Model Statement ........................... 4-165
9 W: ?, l5 X, J, LChapter 5 - Using JFET and MESFET Models............................................. 5-1; |6 W* v. R- G/ I0 w/ r- f: h" m
Understanding JFETs .............................................................................. 5-2
6 U! y R" O/ f% D9 k |; m8 JSpecifying a Model ................................................................................. 5-3# k5 s7 }3 b5 _3 a3 E) g8 K; X
Understanding the Capacitor Model ....................................................... 5-52 {% h% s; m5 ~/ R; O* ^: s
Model Applications ........................................................................... 5-5
1 N i8 O# e9 ~9 m9 \Control Options ................................................................................. 5-6
/ j: D' R+ U- `$ Y- A7 vJFET and MESFET Equivalent Circuits ................................................. 5-7
8 x8 i' b. u+ ]3 f9 sScaling ............................................................................................... 5-7
. d, p9 g P) E2 GUnderstanding JFET Current Convention ........................................ 5-7
' S q5 ^& k" @2 [JFET Equivalent Circuits .................................................................. 5-8
% d* b5 `( R0 B+ XJFET and MESFET Model Statements ................................................. 5-13
% q; q8 F. m% d$ P. c( WJFET and MESFET Model Parameters ........................................... 5-13# @, b" V" h; d+ k2 D
Gate Diode DC Parameters ............................................................. 5-152 T, E& a3 d( u) h, h
JFET and MESFET Capacitances ................................................... 5-25
4 G7 @4 K9 |* FCapacitance Comparison (CAPOP=1 and CAPOP=2) ................... 5-29% L; [, ~( Z: Z# ]
JFET and MESFET DC Equations ................................................. 5-31# {9 q! j, S( [1 P! o) x
JFET and MESFET Noise Models ....................................................... 5-352 x4 @; m' G2 ?8 }) |3 _, _
Noise Parameters ........................................................................... 5-35; U$ L$ c$ g- [6 V ]0 E1 n
Noise Equations .............................................................................. 5-358 k1 F7 f, A: {! x. z$ h
Noise Summary Printout Definitions .............................................. 5-36. U8 M( r% Z6 o# k
JFET and MESFET Temperature Equations ........................................ 5-374 |" l# p4 j ^
Temperature Compensation Equations ........................................... 5-40
p( R' W6 ^- F L。。。。。。。。。。。
% A5 K, y& l& A' K/ ^: m5 z# L6 Y+ u" Z! F* D" M3 [& A2 n' o
0 r4 F" t" j$ x% v& p% E1 t5 y P |
|