|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction; N) Q0 v4 z! I2 O) d5 l: B$ r
1.1 Photonics: the countless possibilities of light propagation% F( ~) u( P6 k: l5 k* I2 R
1.2 Modelling photonics
( X/ T! H. K7 ]$ ]1 R8 `& i2 Full-vectorial Beam Propagation Method
w- X- }( p& Z6 k, I5 k2.1 Introduction6 n" |! D6 N' P8 g& i
2.2 Overview of the beam propagation methods
- d4 j! V1 E, k) v9 P( n5 |2.3 Maxwell’s Equations
0 S) e' O! B T- I4 F9 T. y+ ~2.4 Magnetic field formulation of the wave equation$ E/ A( j% D9 s+ [* e6 Q
2.5 Electric field formulation of the wave equation3 W6 e- c# D7 R3 O: i/ z7 x
2.6 Perfectly-Matched Layer
3 l: B. ]2 X2 G8 s- `+ o/ Y; m2.7 Finite Element Analysis! e E, Q+ E7 a$ M+ v S7 D
2.8 Derivation of BPM Equations9 v4 M( v& d! u4 \" T3 x3 E
2.9 Imaginary-Distance BPM: Mode Solver
1 [$ p- r6 s/ z' ?3 Assessment of Full-Vectorial Beam Propagation Method1 R0 F }2 f& A t
3.1 Introduction, N8 G' o9 a1 F4 \) l# L Y; u2 s" C
3.2 Analysis of Rectangular waveguide
( f% \ w! c" t' n" k: q3 I3.3 Photonic Crystal Fibre
5 t& f- x& |/ X' i7 J( M, j3.4 Liquid Crystal Based Photonic Crystal Fibre
' i, n3 V. \+ @( R3.5 Electro-optical Modulators. ^8 \* v& g2 K2 o5 r* N
3.6 Switches
, j7 N. `$ \# Q& x' _4 N% q4 Bidirectional Beam Propagation Method
! R5 A, @ S0 a# m' n4.1 Introduction
$ w \! H0 L. E' a) K- F4.2 Optical Waveguide Discontinuity Problem
. \+ H% B T# }4.3 Finite element analysis of discontinuity problems
+ r' o* g0 q" k# f4.4 Derivation of Finite Element Matrices
z% |" N" @, n# r3 J4.5 Application of Taylor’s Series Expansion
% M; k% y: E' N4.6 Computation of Reflected, Transmitted and Radiation Waves* g* f; b2 x6 r$ S5 V" a* u
4.7 Optical fiber-facet problem4 ]8 I; y1 G1 [5 L3 N7 @8 ~
4.8 Finite element analysis of optical fiber facets
3 J% Z5 n, [% f4.9 Iterative analysis of multiple-discontinuities
6 \. y5 H6 N4 C! T8 i: c/ A4.10 Numerical assessment" }/ a8 ]$ O H& k$ V
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment1 _7 m9 u) P. ]5 A. D- |" G \# F+ p
5.1 Introduction
0 |/ V4 m8 r% ^! U9 b, h# r5.2 Maxwell's equations1 n. a9 s1 o0 P' I+ _& L6 Y
5.3 Brief history of Finite Difference Time Domain (FDTD) Method4 n) b% ?/ o, {$ _: p, d
5.4 Finite Difference Time Domain (FDTD) Method' P$ C4 w7 y5 H+ g5 q
5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit+ Z: p* L1 {7 I- b7 W
5.6 Complex-Envelope ADI-FDTD (CE-ADI-
3 |& b7 Y# \4 W# v% j5.7 Perfectly Matched Layer (PML) Boundary Conditions
0 x" q: G" ]5 I, y) x& y5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition& t" E. f4 {7 T$ w
5.9 PML Parameters
2 O6 D& U1 v ?5 |' j: E5.10 PML Boundary Conditions for CE-ADI-FDTD
! C4 _6 w2 q) ^; E9 Q/ t* F% g5.11 PhC Resonant Cavities
" c1 `8 {3 E0 L: y: y+ c: g5.12 5x5 Rectangular Lattice PhC Cavity
# i% K4 M7 f. }1 ]5.13 Triangular Lattice PhC Cavity
]3 l, q6 E, ]/ @5.14 Wavelength Division Multiplexing0 X ^& p+ e/ u. b
5.15 Conclusions" m) W4 [, h: J! r4 r$ p2 o
6. Finite Volume time Domain (FVTD) Method
' w9 D0 m6 \- ]/ P( n6 s$ X6.1 Introduction& x7 o) h' F. @, U
6.2 Numerical analysis
( [% z4 x/ w# ^# D1 I" a6.3 UPWIND Scheme for the Calculation1 L8 b. ~: f/ `" x
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation; m4 z: v( v% {7 A
6.5 2D Formulation of the FVTD Method
" o- Y) T; s1 q: |7 u( f6.6 Boundary Conditions) k. h+ h0 A; h {
6.7 Nonlinear Optics5 O' G+ A8 j% A! \+ {
6.8 Nonlinear Optical Interactions
* N- k; [5 q/ z$ S6 @6.9 Extension of the FDTD Method to Nonlinear Problems- P! M. c# m8 n$ v5 U2 ~1 ?6 h8 O
6.10 Extension of the FVTD Method to Nonlinear Problems
7 Z3 |% J# K8 m6.11 Conclusions3 [3 Q8 Y( K, M% t2 V
7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
7 Y& H" |" m2 D6 {, i8 C7.1 Introduction
- I: Y8 X! B6 p+ {, r) y3 C+ H; m7 ~7.2 FVTD Method Assessment: PhC Cavity
3 a8 d+ n! y l" t( b' J7.3 FVTD Method Assessment: PhC Waveguide- v" ]* D4 A# S" B2 X6 B. i
7.4 FVTD Method Assessment: PBG T-Branch
( l0 `8 w; `$ W+ B8 [# ^7.5 PhC Multimode Resonant Cavity
( m& d4 U, D7 P. p7.6 FDTD Analysis of Nonlinear Devices
( t d/ Y' I8 c8 b7 _! H7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
; ?: `6 K5 ]/ F5 {/ H% Y5 C7.8 Conclusions
7 \ C. L4 r b* Z- s# n8 Multiresolution Time Domain
3 u( X/ |4 K7 o: n. y8.1 Introduction+ D" K7 Q V4 k# @: J0 U: A4 f- n
8.2 MRTD basics6 z1 I8 @' K9 P) r" `
8.3 MRTD update scheme+ I, y9 t7 D2 h+ H
8.4 Scaling-MRTD3 l7 o7 L# e* a, b" q
8.5 Conclusions& A( k$ J9 X' A1 i' B2 K$ \/ Q; \
9 MRTD Analysis of PhC-Devices. y/ r/ V& V7 _, K$ V* `* H
9.1 Introduction) f$ I% d+ V( I6 M# z `# d; J0 e
9.2 UPML-MRTD: test and code validation
/ Q- s" ]0 J- X9.3 MRTD vs FDTD for the analysis of linear photonic crystals+ u! W+ i2 ]* y
9.4 Conclusions+ X) ^" [0 R9 s) L4 R
10 MRTD Analysis of SHG PhC-Devices
' [( O( w8 }' U* B0 ?- e10.1 Introduction
: s+ @3 A" u+ \# |& g5 R10.2 Second harmonic generation in optics! b- E8 C1 c! x
10.3 Extended S-MRTD for SHG analysis4 y$ ?- ?/ d' @; i1 `6 T
10.4 SHG in PhC-waveguide% I8 R m' e Q+ R! i; \5 s
10.5 Selective SHG in compound PhC-based structures+ ~0 F4 f1 b. p$ o
10.6 New design for selective SHG: PhC-microcavities coupling
# |9 B/ R, ~/ o* X* e8 @10.7 Conclusions
7 F' ^4 Q; ^9 I3 t4 b( |- [2 ~- o8 U11 Dispersive Nonlinear MRTD for SHG Applications V: ? u+ N4 ~8 [ Y
11.1 Introduction
, j! @+ N2 T6 R; m" x: w11.2 Dispersion analysis( o# p2 B- p0 m! a
11.3 SHG-MRTD scheme for dispersive materials
+ S' b7 ?- `4 W11.4 Simulation results9 F4 E' J6 k& I. \* G
11.5 Conclusions |
|