|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction7 ~+ G+ T, f8 `$ ?
1.1 Photonics: the countless possibilities of light propagation5 E8 J$ l( L' h! o) x
1.2 Modelling photonics
& S0 o* C0 m; O5 X; Q4 v; d2 Full-vectorial Beam Propagation Method
3 e7 ` d. P. W/ w# x& D7 F* S2.1 Introduction
7 N6 E3 n Y6 o' d2.2 Overview of the beam propagation methods/ i4 a. G- K4 \* f P B
2.3 Maxwell’s Equations
/ t$ ]) k- {2 G% h2.4 Magnetic field formulation of the wave equation8 c4 Y; I3 I: W; `( I- {, T
2.5 Electric field formulation of the wave equation
4 S% j- `! _( ]5 x4 T5 p9 m( s2.6 Perfectly-Matched Layer
* O: b2 f+ M" ]: j% [' y! L2.7 Finite Element Analysis
4 W6 ]( n" j% i: S2.8 Derivation of BPM Equations" X* }9 q$ d0 P. ~; B/ ]
2.9 Imaginary-Distance BPM: Mode Solver# ~5 a/ h3 M3 ]8 R# h, l0 k4 U
3 Assessment of Full-Vectorial Beam Propagation Method
6 [& H; X D: s c S3.1 Introduction
7 S" R, k' W6 ]1 ~( Z3.2 Analysis of Rectangular waveguide" [) h% n$ [ J: d7 @5 W
3.3 Photonic Crystal Fibre
! k+ r: x( @- X4 ~1 G( B* u3.4 Liquid Crystal Based Photonic Crystal Fibre( I' [6 c7 ]. Y6 S, v- N4 o; P
3.5 Electro-optical Modulators' U0 x0 t2 l2 z4 G! c6 H
3.6 Switches' e" f$ @0 B2 Y- ~) G3 D, F
4 Bidirectional Beam Propagation Method6 X$ u% @! c+ A6 r$ C
4.1 Introduction
; d4 S& R& G/ [" {, `4.2 Optical Waveguide Discontinuity Problem# Y0 Y) u g- O: @8 X
4.3 Finite element analysis of discontinuity problems. ^9 E) S, _ p d- G4 D/ o
4.4 Derivation of Finite Element Matrices$ M2 B6 c+ p9 |0 q( g
4.5 Application of Taylor’s Series Expansion3 ~2 ]# ~, N8 X' X- G
4.6 Computation of Reflected, Transmitted and Radiation Waves
2 H* H0 T2 g6 J2 {- q/ `4.7 Optical fiber-facet problem
8 s7 u' O5 _; j. H z4.8 Finite element analysis of optical fiber facets
; @9 [/ R) B, f4 Q& S" g9 K4.9 Iterative analysis of multiple-discontinuities' _! J0 I: R# t' o( H/ P
4.10 Numerical assessment t% l7 g1 I9 N! ]" B8 g
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment7 e3 J5 x; T1 i( h6 I
5.1 Introduction
( ]3 F* R1 `7 g7 t* f5.2 Maxwell's equations
. [" a7 ^. _" }8 m/ G( }- w5.3 Brief history of Finite Difference Time Domain (FDTD) Method
% X% C0 M1 q9 z; {- K8 s5.4 Finite Difference Time Domain (FDTD) Method
/ m Z: I9 ]) E& r. B1 _5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit
1 M# ]0 V8 E( u- P) a5 u! q5.6 Complex-Envelope ADI-FDTD (CE-ADI-
- [# u% X$ D0 G2 p( w& ?5.7 Perfectly Matched Layer (PML) Boundary Conditions
) x6 L& X" }# Z* H5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition+ V' Q' R; S$ ~! F1 O2 \+ Q1 i
5.9 PML Parameters
4 a) D, s7 J+ \1 G# ?) h; e5.10 PML Boundary Conditions for CE-ADI-FDTD' g$ q5 i4 D/ u- c# ?
5.11 PhC Resonant Cavities
" ?) n' `: J' j* \. e/ z3 f5.12 5x5 Rectangular Lattice PhC Cavity
9 O' E1 q, c; q0 N' F# @& N M5.13 Triangular Lattice PhC Cavity
/ q! T x% \. I+ j- {5.14 Wavelength Division Multiplexing
. q+ ]5 C) `2 Q* F- k2 F2 ]5.15 Conclusions' w) ?8 r1 A1 ?' k
6. Finite Volume time Domain (FVTD) Method7 k) m/ ~2 |0 c8 Z0 Q6 v/ f
6.1 Introduction
+ @" n* d) f" k* z9 C6.2 Numerical analysis
7 C: N0 i" P' n9 B) _) Q6 n6.3 UPWIND Scheme for the Calculation: |' M; X( L4 R: g: {: O$ ~' L
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
- w% x3 [2 W4 H) y* }6.5 2D Formulation of the FVTD Method
+ _, y$ |& M; h6 g% H6.6 Boundary Conditions
& \% N, S: @# g/ P. k6.7 Nonlinear Optics4 a' k) T' r9 Y( z/ n, e
6.8 Nonlinear Optical Interactions
/ x0 n% S( u. g* l! o6.9 Extension of the FDTD Method to Nonlinear Problems
/ m1 A. l3 |1 C" m0 _% p6.10 Extension of the FVTD Method to Nonlinear Problems
' W! u: W8 a- p, T6.11 Conclusions$ u6 \5 J$ @! Q8 Y6 B" ]
7 Numerical Analysis of Linear and Nonlinear PhC Based Devices! h J9 N8 I9 t* A
7.1 Introduction9 {0 {/ J+ V5 y. e3 g* b
7.2 FVTD Method Assessment: PhC Cavity
3 V+ F; C7 ~- f4 _/ s: w. G7.3 FVTD Method Assessment: PhC Waveguide4 P, N2 Y3 z( k5 q: E. y; s
7.4 FVTD Method Assessment: PBG T-Branch. o" u9 u7 P, N+ w1 O
7.5 PhC Multimode Resonant Cavity! D) [( H1 E% {8 E
7.6 FDTD Analysis of Nonlinear Devices9 q; j& p* g5 c
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
( g) F$ ^4 j$ o- M7.8 Conclusions
) U. c P1 {+ J2 k2 c) R8 Multiresolution Time Domain
5 p5 l" I9 ~8 s5 g! s! |& p7 X# ~8.1 Introduction
7 A6 l$ J5 N( w4 t( C* P8.2 MRTD basics+ c E6 V# v% v- {. u+ T; j$ J Q
8.3 MRTD update scheme8 A5 W8 S8 k3 c. W0 n/ J' V- }* r- Q
8.4 Scaling-MRTD
+ j ?+ I$ I0 k. h6 y% r P8.5 Conclusions
& g- Z/ f3 v7 Z: @; C; D9 MRTD Analysis of PhC-Devices
1 j0 f* g. r+ B9.1 Introduction* X- N+ N7 n1 L
9.2 UPML-MRTD: test and code validation
7 l! x) y h% M+ W4 g& e( y' s4 A9.3 MRTD vs FDTD for the analysis of linear photonic crystals
& I% y6 v- [- K6 f, z6 c1 o9.4 Conclusions4 J7 _7 L! p# O
10 MRTD Analysis of SHG PhC-Devices
1 r2 k) r' s5 _" ]* H: |; R# E10.1 Introduction7 _* D. O% i$ d9 X& D# v. O5 U
10.2 Second harmonic generation in optics3 w: t. c6 q5 q) R
10.3 Extended S-MRTD for SHG analysis
. e5 V$ y- [& h10.4 SHG in PhC-waveguide) F' g- @$ b. b: f
10.5 Selective SHG in compound PhC-based structures
+ f, b% U4 ?( ]4 s: f7 S. C10.6 New design for selective SHG: PhC-microcavities coupling+ M6 t4 d" b) Y2 ?) }
10.7 Conclusions
, I; O. @8 s( g' ^- W11 Dispersive Nonlinear MRTD for SHG Applications
6 ^6 C& E0 X8 `/ [- m1 m) l. s11.1 Introduction0 @, c6 `$ I: t4 P' u+ k I
11.2 Dispersion analysis2 v% j: Z4 |7 X q; `' z( X
11.3 SHG-MRTD scheme for dispersive materials7 P4 {. w% k' I5 c
11.4 Simulation results! d+ V# \4 g: c% B
11.5 Conclusions |
|