|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction
7 l8 Z& \3 |4 l0 f: D: w1.1 Photonics: the countless possibilities of light propagation% [' [. m# u2 s3 S% ]4 f
1.2 Modelling photonics2 A {& ~# g2 O: q# r( |0 i: t) u
2 Full-vectorial Beam Propagation Method" N- y4 i, i$ V% Z- t0 s s, p/ N
2.1 Introduction
# w0 [, D3 R! U9 d, w2.2 Overview of the beam propagation methods
* `: l5 j6 ^- `+ C2.3 Maxwell’s Equations- ]9 |( z `# h! Z: h" a5 R3 U; B
2.4 Magnetic field formulation of the wave equation+ Y# A" n% D* r+ N
2.5 Electric field formulation of the wave equation
8 K2 \# ^7 ?& k& r2.6 Perfectly-Matched Layer
- N. J, g1 X. S- U9 ?2.7 Finite Element Analysis6 f5 V9 @ V- J. n+ `
2.8 Derivation of BPM Equations
( L5 n, U# e3 f% t2.9 Imaginary-Distance BPM: Mode Solver! A2 P. `8 Q2 [
3 Assessment of Full-Vectorial Beam Propagation Method
1 C$ U3 n% g% x. w3.1 Introduction
, A; D3 j8 p( w+ O4 [3 S9 i! ^3 @1 o3.2 Analysis of Rectangular waveguide
% b u2 H) F2 V5 D n3.3 Photonic Crystal Fibre4 P" A' d% s" H2 d1 O/ S
3.4 Liquid Crystal Based Photonic Crystal Fibre
7 O; R2 a5 h4 y3.5 Electro-optical Modulators
& O# U# `7 F( T: [3.6 Switches
0 [ _* y2 h. j- ~9 `; {. @- h- y9 R9 |" h4 Bidirectional Beam Propagation Method
) V( _5 Z2 L5 W+ N ]" i4.1 Introduction
) z7 U* J+ P! h! l: r1 T3 J4.2 Optical Waveguide Discontinuity Problem- g, ^( I) ]' l) R) J- y! {, ^' q
4.3 Finite element analysis of discontinuity problems+ d* Z9 p8 w2 E3 o0 I; S
4.4 Derivation of Finite Element Matrices) f' E8 h# L& |% }7 ~
4.5 Application of Taylor’s Series Expansion
?' H! a" j6 H, `% X0 v; t4.6 Computation of Reflected, Transmitted and Radiation Waves" Y: x, O# y- B0 B
4.7 Optical fiber-facet problem1 x- @2 d8 {( `5 w# m" L4 }( w
4.8 Finite element analysis of optical fiber facets' k# H1 T3 |: {( w) o3 P
4.9 Iterative analysis of multiple-discontinuities
7 G8 D7 ] A% |( a8 r4.10 Numerical assessment
! N% p3 Y$ j* P9 s1 C5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
! L) m# f/ u2 O, {) ]3 l5.1 Introduction
% ]7 F) Y) k9 b9 |4 |5.2 Maxwell's equations
9 L. {9 A- W# h7 n& j& |: H. r5.3 Brief history of Finite Difference Time Domain (FDTD) Method8 R% L- V6 b* W! l
5.4 Finite Difference Time Domain (FDTD) Method; j+ }8 s2 b$ @6 Q& H, Z
5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit/ p! P2 a- a7 L. r3 n% K
5.6 Complex-Envelope ADI-FDTD (CE-ADI-+ Q+ C" V: X5 E, f
5.7 Perfectly Matched Layer (PML) Boundary Conditions
; X w1 c; _ p7 \2 v5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
: c8 t0 P' I9 z2 w% l5.9 PML Parameters8 V# @; ^' l6 v5 z! X
5.10 PML Boundary Conditions for CE-ADI-FDTD
5 I( L& T$ i5 m3 W- S/ h5.11 PhC Resonant Cavities
# T2 n& h! ?8 A; g3 I5 H. g( I4 ^+ N5.12 5x5 Rectangular Lattice PhC Cavity
- a( b. A* _( I$ ?& O; i9 i+ q5.13 Triangular Lattice PhC Cavity4 l% X, `% W& ~1 q0 E! y- G* `
5.14 Wavelength Division Multiplexing
: a" A7 K7 y& l# N5 ]( w5.15 Conclusions
3 n) y% h5 Z4 X# l7 r6 [6. Finite Volume time Domain (FVTD) Method- y: W- {% A, n; H9 t
6.1 Introduction
0 ~" M7 o( b) T3 }6.2 Numerical analysis+ |- v, `; J3 ]8 Q
6.3 UPWIND Scheme for the Calculation
+ z, B# t: D# O: O+ ^0 U R$ R( w6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
8 }3 t4 m# B5 L# x6.5 2D Formulation of the FVTD Method! e8 y, P" {) d1 j- H) K$ z7 c+ m
6.6 Boundary Conditions" \1 E; U# Y3 L1 L. |% H9 O" Y4 [. |4 J
6.7 Nonlinear Optics
7 T; C1 ], @" }2 a' `2 U \6.8 Nonlinear Optical Interactions" R1 U5 I7 F$ g
6.9 Extension of the FDTD Method to Nonlinear Problems* E9 j0 u7 U7 V
6.10 Extension of the FVTD Method to Nonlinear Problems4 y# w/ D! e- r& N5 J
6.11 Conclusions
% l# \. L7 O. j7 u7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
- I O+ B3 ]7 R: {7.1 Introduction, g) {% K+ B$ L! `
7.2 FVTD Method Assessment: PhC Cavity
' _8 r% ?# Z7 I2 F3 N7.3 FVTD Method Assessment: PhC Waveguide" X/ d$ E9 w0 ]+ _3 `' x! }* b
7.4 FVTD Method Assessment: PBG T-Branch
- c' z v0 K: t: P! e7.5 PhC Multimode Resonant Cavity7 Y6 [3 ^/ y3 r+ T4 Y4 I8 _0 {
7.6 FDTD Analysis of Nonlinear Devices
* c5 Y9 d C4 V5 X7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
+ N5 l( _4 k4 U. V. A8 ?7.8 Conclusions. z4 x9 E( ?! w* R7 t! M% m
8 Multiresolution Time Domain
4 \3 b p3 N5 U4 U2 j, x8.1 Introduction+ [1 L; B5 L, h* B+ l
8.2 MRTD basics! w" y& v, S4 F' Z: _% Y. t' c
8.3 MRTD update scheme
2 `( g$ V; L0 g; s8.4 Scaling-MRTD1 S1 m- o5 F) N
8.5 Conclusions
- N0 i+ z" W2 ^1 {* Z t0 L8 _6 ^9 MRTD Analysis of PhC-Devices, @$ e$ H7 z4 t% L0 Y& h. E' p
9.1 Introduction
0 E, e, I! j0 f5 k. ~7 ^9.2 UPML-MRTD: test and code validation4 j6 C4 V8 B" L! S( [" y% F
9.3 MRTD vs FDTD for the analysis of linear photonic crystals. h4 _3 A7 ~4 B
9.4 Conclusions
% M6 H& L7 }- v0 Q/ n% K) a4 x6 L10 MRTD Analysis of SHG PhC-Devices3 V# g6 ^4 D: Z" _* \
10.1 Introduction0 R# H' h5 _6 y2 O5 Z7 P2 p
10.2 Second harmonic generation in optics- Y: m3 n5 { _0 B2 l2 ~
10.3 Extended S-MRTD for SHG analysis
5 H$ L, t& |9 D) J; @" Q! L10.4 SHG in PhC-waveguide
" o+ H) T+ R$ a5 F10.5 Selective SHG in compound PhC-based structures
" ^6 f" Z1 q/ T$ q+ Z10.6 New design for selective SHG: PhC-microcavities coupling
9 }: D; D @# Y+ c) {: p+ D10.7 Conclusions
" H, a# s5 f* E% A H- U: R11 Dispersive Nonlinear MRTD for SHG Applications
$ D/ r7 z% ?8 \11.1 Introduction
( Z6 y! g6 c, u- y11.2 Dispersion analysis
& r6 W6 {2 d: ?) n8 Y5 H8 @5 L R11.3 SHG-MRTD scheme for dispersive materials7 a3 [( Z, S' g0 G" b' L) H% t; v" [
11.4 Simulation results
9 Q/ E5 r- _6 ]11.5 Conclusions |
|