|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction5 F& |: W$ v9 U- I% i6 A
1.1 Photonics: the countless possibilities of light propagation: ^1 w: V* u, ]4 ^7 L- r, o& d
1.2 Modelling photonics* j1 q/ ], @5 H2 E
2 Full-vectorial Beam Propagation Method1 F7 ]& y- D p6 W
2.1 Introduction! C4 k* \: s1 I$ g
2.2 Overview of the beam propagation methods
1 w$ C: f* q0 ^7 D2.3 Maxwell’s Equations. j, T+ B, K; Z( A! I
2.4 Magnetic field formulation of the wave equation
8 n f0 Q5 s3 j- v. H% P. V" n2.5 Electric field formulation of the wave equation
( l! P- M$ S6 h% \: v8 B, g% N2.6 Perfectly-Matched Layer# {; I m3 X4 K' A: X3 a* \
2.7 Finite Element Analysis3 u8 u1 P$ J7 b. f, n- C- j
2.8 Derivation of BPM Equations
2 c' j' J+ F) ]. Q+ w! [8 l# o1 D2.9 Imaginary-Distance BPM: Mode Solver' g- Y6 q6 f9 h, N9 n1 i; c
3 Assessment of Full-Vectorial Beam Propagation Method
1 |7 o" G+ P/ r" R/ r3.1 Introduction
( [+ L/ w( i+ i/ y2 O# P3.2 Analysis of Rectangular waveguide
9 d: o/ p- F$ e% x3 r3.3 Photonic Crystal Fibre
/ u) J" y/ J1 }6 t" a2 H8 o3.4 Liquid Crystal Based Photonic Crystal Fibre: g* S8 y X$ O+ u. h) l
3.5 Electro-optical Modulators
" A* }! {" Y' O0 G0 U7 m# f0 T6 {3.6 Switches
. B6 ~! z$ w5 ~; H' O4 Bidirectional Beam Propagation Method" X( y1 z0 N- s: Y g. j( r
4.1 Introduction0 P% y6 X# F; \! k! l9 a& v4 C
4.2 Optical Waveguide Discontinuity Problem9 D D- P. c" }% k8 {5 }; p
4.3 Finite element analysis of discontinuity problems# W1 k& V. X" r! T
4.4 Derivation of Finite Element Matrices
: i# Z+ N9 R$ J4.5 Application of Taylor’s Series Expansion) R& @4 q) @( x) y0 ]# ^5 @' t% Y
4.6 Computation of Reflected, Transmitted and Radiation Waves
0 M t; x4 u1 K# E. [+ I) F4.7 Optical fiber-facet problem% C5 e, c; J0 u6 w4 N/ o" V
4.8 Finite element analysis of optical fiber facets
" O: ~' }7 N. _8 `4.9 Iterative analysis of multiple-discontinuities* T1 j2 q! u3 l
4.10 Numerical assessment! ^1 D2 }: g+ G) ~) B
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment% Z, o* h) u8 P8 Z: z1 Y
5.1 Introduction
- g+ D: J+ Z) t% {" R2 I& I3 b% ?5.2 Maxwell's equations
: k5 }4 F. F- C+ Y5.3 Brief history of Finite Difference Time Domain (FDTD) Method
; y* S: y4 s. N2 F( |1 E/ k* {5.4 Finite Difference Time Domain (FDTD) Method& Y4 f$ t5 V! w- ~7 j9 a K. D
5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit
1 P$ R; I; `3 w/ p9 i5.6 Complex-Envelope ADI-FDTD (CE-ADI-
( U/ O T) J; ^, F% c5.7 Perfectly Matched Layer (PML) Boundary Conditions8 k: x, S1 }6 \9 X
5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
7 p! p- J9 V [4 D0 l5.9 PML Parameters
% c/ B& B5 V0 f2 X5.10 PML Boundary Conditions for CE-ADI-FDTD
. m/ _. E1 o* \5.11 PhC Resonant Cavities
S& s1 f5 |3 g* V5 B5 B5.12 5x5 Rectangular Lattice PhC Cavity5 z/ b+ U. D' J) M6 v$ e
5.13 Triangular Lattice PhC Cavity) |* x, u0 U1 m. ?3 E+ R
5.14 Wavelength Division Multiplexing
$ u8 g7 a& Q7 |5.15 Conclusions2 [" G @) }1 E, @
6. Finite Volume time Domain (FVTD) Method f; w' P' z; [) r# M r& l
6.1 Introduction
% s4 F. x: n/ m/ p; Q8 F- N% b2 b6.2 Numerical analysis4 T3 K5 e0 [. ?, a! ]4 u+ A: b
6.3 UPWIND Scheme for the Calculation9 e$ C9 W- v# j
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation! e1 A+ k: a- \% q* y" a) s2 F
6.5 2D Formulation of the FVTD Method2 h. H, i& k$ w: x, B* F
6.6 Boundary Conditions P$ x) a/ p9 e+ F/ p7 w+ I
6.7 Nonlinear Optics. m( m5 _3 _: J6 s: J0 J
6.8 Nonlinear Optical Interactions
% p2 U& d5 g9 J) `; s! q. e i6.9 Extension of the FDTD Method to Nonlinear Problems
8 `1 B/ t; B' ]3 {- a7 k6.10 Extension of the FVTD Method to Nonlinear Problems, `( Q' r* r# F+ i, q/ x: X/ E
6.11 Conclusions' t# w: k1 [1 |
7 Numerical Analysis of Linear and Nonlinear PhC Based Devices3 W! y0 J' {! ], H3 B) b$ U8 H
7.1 Introduction
2 m! l7 m% T( b& v7.2 FVTD Method Assessment: PhC Cavity# [8 m$ C' B* M9 X
7.3 FVTD Method Assessment: PhC Waveguide: L3 ^# p! I# b8 K
7.4 FVTD Method Assessment: PBG T-Branch
- U2 a& ~# |4 i3 v7.5 PhC Multimode Resonant Cavity
4 `3 Y- l) l" I* S7.6 FDTD Analysis of Nonlinear Devices6 V& W7 S8 O, O9 R' I
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires8 c; O3 _$ Z4 A6 v# n: b
7.8 Conclusions- A; _/ S! T+ { p0 x% }/ C
8 Multiresolution Time Domain
- G7 Q( @$ g+ q$ i; t$ L8.1 Introduction
- e( g$ ]6 Q5 |. ?8 |: a, t; ]8.2 MRTD basics
- u/ x: ^4 G. ` Y8.3 MRTD update scheme
7 |9 j2 `! f% N: y4 p9 J8.4 Scaling-MRTD: A3 n$ x5 g2 a! N p( M+ z
8.5 Conclusions
8 E+ D/ F' v) j# ~3 U9 MRTD Analysis of PhC-Devices
( X4 B7 S; ^" |9 q9.1 Introduction E: }/ L9 A% t5 f9 z
9.2 UPML-MRTD: test and code validation) O8 c: O: m! X7 U# ? l9 k, K
9.3 MRTD vs FDTD for the analysis of linear photonic crystals
6 ~3 p2 J) h) K+ R: n3 \( i9.4 Conclusions
8 i, L, r i0 p! e10 MRTD Analysis of SHG PhC-Devices
2 H5 ~; P7 R% K, L2 y A10.1 Introduction( n4 P M3 q; K# F7 d0 ]
10.2 Second harmonic generation in optics" g! x+ X: c, J" e' y9 o
10.3 Extended S-MRTD for SHG analysis
$ ^, x: {; r( C( a4 |0 P10.4 SHG in PhC-waveguide
; T* u# ~. s$ D. G10.5 Selective SHG in compound PhC-based structures
+ G& C, v$ B6 S- b& q10.6 New design for selective SHG: PhC-microcavities coupling6 {2 M8 r1 I7 V6 V8 i- c* [
10.7 Conclusions
' d! W( N6 v/ H11 Dispersive Nonlinear MRTD for SHG Applications; V% ]6 R; M! ? u; J
11.1 Introduction
+ L2 x& o; X$ N8 i+ E11.2 Dispersion analysis1 w, w$ [5 [- v* Z3 y9 z
11.3 SHG-MRTD scheme for dispersive materials: g& V- Z: @# S# `9 ~
11.4 Simulation results
4 |9 r+ q' n5 ^: B; J7 j11.5 Conclusions |
|