找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

巢课
电巢直播8月计划
12
返回列表 发新帖
楼主: xiaoyu19890210
打印 上一主题 下一主题

pcie AC耦合电容放置位置请教

[复制链接]

33

主题

4949

帖子

1万

积分

EDA365特邀版主

Rank: 6Rank: 6

积分
12225
16#
发表于 2016-3-10 21:26 | 只看该作者
本帖最后由 超級狗 于 2017-5-18 13:28 编辑
2 ^) i2 _- l* K
( _6 i% c4 [; U3 t$ T9 q5 R樓主的洋文兒還不錯吧?- z  K/ G; X0 P3 o* P

4 P" S' j  ~) E/ K$ S- g8 C有個洋人在花旗國網站上,問了同樣的問題。) S$ _' Q  e+ N
; e' M5 I' M! `& @% J
結果………$ i$ S# T, |3 |( z% ^

0 `$ p( H+ v$ b& B# L3 L
$ j2 m+ e' K9 o$ _4 s! K& C
7 c; a6 Y. U! d" U# m
  F& \) V! M1 r6 ]3 o' C$ |

) b1 _4 F4 p! g; p& e
Where should I put AC coupled capacitors?
4 {2 a! U! Z3 H$ B1 B* @; K

# I- {" d* d* y8 f8 S/ J4 a6 j$ JThe coupling capacitors are usually placed close tothe transmitter source.
+ `$ R/ n. V" b, v& p, t6 I" l! A5 z8 M
1 \8 E  y( j) N8 \% ^
Going along with Dr. Johnson, we need to figure out the distance. The propagation velocity of signals on most FR4 types of board isabout c/2. This equates to around 170ps per inch for internal layers and morelike 160 ps per inch for external layers.
9 I+ `4 p2 F6 V5 x5 e
6 ?5 n7 Q9 R4 j8 r; L; w
; @8 {% Y/ R! l* g! S
Using a standard interface running at 2.5Gb/sec, the unit interval is 400ps, so according to that, we should be much less than 200ps away from the transmitter. If this interface has been implemented in an IC,then you need to remember that the bond wires are part of this distance. Belowis a slightly more in-depth look at the issue.
( Y" q" }9 \: E1 v2 B  o# z& \
$ V* M" P. d, A5 h0 t$ @
, c' I4 A! h% h
In practice, coupling devices are placed as close as possible to the transmitter device. This location naturally varies depending onthe device.
2 [- W. }* Z, `8 }# F* s; g5 z; a0 c* y6 p) S/ U/ }$ j* ]

: k7 e% [! |+ t3 E- D3 ^% J" WNow the capacitors. This is an RLC device at these speeds, and most devices are well above self-resonance in multi-gigabit applications. This means you may well have a significant impedance that ishigher than the transmission line.5 t  R8 ]! h  Q4 p+ Z2 V; J2 ~

& y5 P5 v- s4 ^5 C, l# T/ Y

- B" k5 j  n. O) ]For reference, the self inductance for a few devicesizes: 0402 ~ 0.7nH 0603 ~ 0.9nH 0805 ~ 1.2nH  h( u4 [( m4 l$ H$ R
2 w: Y8 Y' \* S% R9 p* V/ R

) F. y* ^* u, T; E" jTo get around high impedance device problems (a majorissue in PCI express due to the nature of link training), we sometimes useso-called reverse geometry devices because the self inductance of the parts issignificantly lower. Reverse geometry is just what it says: An 0402 device hasthe contacts 04 apart, where an 0204 device uses the 02 as the distance betweenthe contacts. An 0204 part has a typical self inductance value of 0.3nH, significantly reducing the effective impedance of the device.( v4 w) y8 Y, ~  ]" l( ^  N
4 v& J. C# a8 n% f6 c6 L0 Y
/ T6 H4 |* y  i
Now to that discontinuity: it will produce reflections. The further away that reflection, the larger the impact on thesource (and energy loss, see below) within the distance range of 1/2 of the transition time of the signal; beyond that makes little difference. * N" R4 P  ^, G

& E2 i0 r7 _! ]- B0 F! [5 F  F2 H

& P' [+ S# T- ?" ~% ^At a distance of 1/2 the transition time or furtherfrom the source, the reflection can be calculated using the reflection coefficient equation ([Zl - Zs]/[Zl + Zs]). If the reflection is generated closer such that the effective reflection is lower than this, we have effectively reduced the reflection coefficient and reduced lost energy. Thecloser any known reflection may be situated with respect to the transmitter,the less effect on the system it will have. This is the reason that break-outvias under BGA devices with high speed interfaces is done as close to the ballas possible. It is all about reducing the effect of reflections.; _: Y, |# c( N) i7 o( ^9 n  G

* \2 S& V* w1 A2 }- @0 g. C- s! w% O

  U7 W' z( N, W$ ^As an example, if I place the coupling capacitor (forthe 2.5Gb/sec link) at 0.1 inch from the source, then the distance equates to a time of 17ps. As the transition time of these signals is usually limited to no faster than 100 picoseconds, the reflection coefficient is therefore 17%. Note that this transition time equates to 5GHz signaling artifacts. If we place thedevice further away (beyond the transition time / 2 limit), and use the typical values for 0402 100nH, we have Z(cap) = 22 ohms, Z(track) about 50 ohms, and wetherefore have a reflection coefficient of about 40%. The actual reflection will be worse due to the device pads.( {9 P) C* a3 B; t+ Z/ v3 [* q; P
5 a6 [* Q9 Q* f) q+ }; r9 w6 p
- Z; Z3 w% i! ^4 I5 o/ ~
哈士奇是一種連主人都咬的爛狗!

11

主题

101

帖子

341

积分

三级会员(30)

Rank: 3Rank: 3Rank: 3

积分
341
17#
 楼主| 发表于 2016-3-10 21:34 | 只看该作者
超級狗 发表于 2016-3-10 21:20
& p4 U. U& `: CPCIe Return Loss

. U) d: Y& C! M5 y4 D- v: n0 n: X狗版主啊,这个和您之前说的信号反射、相位啥的有啥关系吗???
6 o3 |, u. l9 Q- ?6 i6 s# a4 m  ~

* f* z" b& O2 x' z3 \+ YPS:要是不爽了就当没看到,,,求别埋。。。拜谢。。。7 R( h& Y" Y3 Q0 S

点评

支持!: 5.0
要是不爽了就当没看到,,,求别埋。。。拜谢***遵命!  发表于 2016-3-10 21:56
支持!: 5
等你長大後自然就會懂!^_^  发表于 2016-3-10 21:37

11

主题

101

帖子

341

积分

三级会员(30)

Rank: 3Rank: 3Rank: 3

积分
341
18#
 楼主| 发表于 2016-3-10 21:35 | 只看该作者
超級狗 发表于 2016-3-10 21:26
* K' p1 t! u, J0 T樓主的洋文兒還不錯吧?
3 F4 ^0 B. I1 K
/ g2 T5 a* d$ @有個洋人在花旗國網站上,問了同樣的問題。
9 \, b- D5 n" H7 J& \, @
sorry,这么大段,才看到。。。
, V. d  w* _+ ~0 l  v6 H8 l

点评

支持!: 5.0
支持!: 5
靠!洋人也寫了不少錯別字@_@!!!  发表于 2016-3-10 21:51

11

主题

101

帖子

341

积分

三级会员(30)

Rank: 3Rank: 3Rank: 3

积分
341
19#
 楼主| 发表于 2016-3-10 22:02 | 只看该作者
超級狗 发表于 2016-3-10 21:263 C: e8 o1 r+ I% k  m( @5 Q4 S; N
樓主的洋文兒還不錯吧?; n6 f: P: g! x& H' h" Z- e2 N2 w

  R0 Y! r- L! o+ r3 V6 M有個洋人在花旗國網站上,問了同樣的問題。

- `, M/ _* }: n8 {' m1 a" v8 K狗版主,看了这么大段,彻底惊呆了,,,实在不能狗同啊。。。
' g8 q  w/ L' n1 bAs the transition time of these signals is usually limited to nofaster than 100 picoseconds, the reflection coefficient is therefore 17%,,,这怎么得出来了/ x: i4 N& z/ m0 r) w

33

主题

234

帖子

878

积分

三级会员(30)

Rank: 3Rank: 3Rank: 3

积分
878
20#
发表于 2017-5-18 11:10 | 只看该作者
超級狗 发表于 2016-3-10 21:261 I4 T1 v0 \6 T% |# L5 R
樓主的洋文兒還不錯吧?
8 d4 y$ \$ M; a$ \
6 q3 _- b  y9 a0 Q' a7 L) y. R有個洋人在花旗國網站上,問了同樣的問題。
$ F- E0 ^2 k+ N" w
我也请教个问题,PCIE gen1,2的AC耦合电容值推荐为0.1uf,而PCIE3.0以后推荐的AC耦合电容为0.22uf,有如下问题,期待大神解答:: z1 {: |* _% z5 _/ f* Z" W
问题1:Gen1,2的速率比Gen3低,为啥耦合电容Gen3的要大呢?电容越大,边沿会越缓,个人理解。7 j0 v% K  a/ l7 N* ]/ r& v% _
问题2:Gen3向后兼容Gen1,2,那当用0.22uf的耦合电容时,在Gen3的链路上跑Gen1,2,是不是就不符合规范推荐的AC耦合电容值啦?
# p/ v4 n: Z1 s& H2 i) B0 z4 J2 \2 G/ s( o/ ?9 e* {% I

33

主题

4949

帖子

1万

积分

EDA365特邀版主

Rank: 6Rank: 6

积分
12225
21#
发表于 2017-5-18 13:24 | 只看该作者
问题 1:Gen1,2 的速率比 Gen3 低,为啥耦合电容 Gen3 的要大呢?电容越大,边沿会越缓,个人理解。5 n9 `' f7 z3 E* @& l
電容並聯l落地(GND),充放電效應的確會造成此結果,但 AC 耦合電容式串接在訊號線上。/ U/ v; B5 m7 |7 W* R2 V

" c& z4 c% T. {7 X; O问题 2:Gen3 后兼容 Gen1,2,那当用 0.22uF 的耦合电容时,在 Gen3 的链路上跑 Gen1,2,是不是就不符合规范推荐的 AC 耦合电容值啦?2 K7 G/ l3 X2 P! u4 E, N
根據容抗計算公式 Xc = 1 / jwC,電容越大容抗越小。高頻減少一些容抗,讓相差、衰減及反射都小一些,似乎也沒什麼不對。9 ?: _9 o7 K$ E" k5 j
9 ?3 ^  ?8 R" `/ I* z2 X
僅為小弟淺見!" ^2 q/ _7 T7 z. _9 {: W

8 f' d2 }' t, ^1 _
哈士奇是一種連主人都咬的爛狗!

158

主题

407

帖子

1076

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
1076
22#
发表于 2018-3-10 11:58 | 只看该作者
听说是有座子就在连接器,没有在tx段
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

巢课

技术风云榜

关于我们|手机版|EDA365 ( 粤ICP备18020198号 )

GMT+8, 2025-2-1 10:48 , Processed in 0.064594 second(s), 32 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表