找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

巢课
电巢直播8月计划
查看: 2396|回复: 2
打印 上一主题 下一主题

[仿真讨论] 好久没发帖,SIlist话题之PCB的损耗可否预测?

[复制链接]

184

主题

778

帖子

7831

积分

EDA365特邀版主

Rank: 6Rank: 6

积分
7831
跳转到指定楼层
1#
发表于 2012-11-26 22:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您!

您需要 登录 才可以下载或查看,没有帐号?注册

x
故事是这样开始的:有人问树脂含量和损耗的关系。) W2 `2 s. Y1 G$ r0 _) S

% W0 X5 k. t0 _7 a0 S3 G# aDate: Tue, 30 Oct 2012 08:52:23 +0800 (CST)
6 Z& n9 M: {* k& z4 ]
  z! T4 y9 }% K2 S6 j/ O( v' UHello experts,% _7 g( ]  n: t) Z3 u& F
>
; M' M9 X9 @( A  d> I'm from PCB house.  Recently we have producted some insertion loss test 4 K8 e+ i0 G5 b- O- M
> boards(16L, SET2DIL coupon, IS415/IT150DA/I-Speed Mid/low loss material with
& X  ?. `* ^: C) O: y' C> RTF copper foil). We found that the multiply core and high resin PP will
7 s; J: O0 ^; ]  n+ p7 p+ [> result a lower loss result. It's a trouble to MI engineer.  I would like to - w* U$ ~' @  X5 j0 G; k
> know how to predict the loss base on stackup. Please help to suggest (papers, ( S2 ~/ K  z- P
> script, free software etc ). Thanks a lot!0 r" ~. I8 i7 A8 g/ J+ {1 k
>0 {7 O/ p+ }2 ?" u2 e# I8 V
>" \: l' X/ p( y' _9 s
>
4 E" O, Y4 G/ f: H; O> Best regards,
1 }) V4 a* n% J" _$ @0 z>( O6 o* Y  s& y( w8 i/ D
> Terry Ho  b  X% }! y  e6 u- c- n5 j- Y
9 Z: M7 U6 z0 Y# ]
然后 Scott McMorrow ,steve weir,Loyer Jeff 这些活跃分子开始依次发表意见.
4 Y% V; _9 O6 M
! O' e/ Q6 p% C& g/ {' TFrom: Scott McMorrow <scott@xxxxxxxxxxxxx>
" Z* w' n! R* ?% _" a0 x: O9 fDate: Mon, 29 Oct 2012 21:02:36 -0400. K% o; Y" y4 f% w# g) ^
( ^" O% x8 }7 H- l
Hmmm...  I'm in the middle of the middle of Hurricane Sandy.  Power is out.
, u- Y+ k+ G1 O- u4 G# iStorm surge is causing the river across the street to rise to unprecedented
/ @4 @. |7 d% U/ `levels." N+ j2 W/ ]* g( a% n" ^) o; W
... and this guy wants us to do his job and suggest free software.
! r) p( _) \  i* q0 U" L) l1 q9 h8 \

9 f0 _5 J; J; LFrom: steve weir <weirsi@xxxxxxxxxx>; a0 C* k; ~) b. ?2 h- V! F
Date: Mon, 29 Oct 2012 21:23:22 -0700
0 @3 m; m" Q6 f# W# {1 A0 s6 @
3 U" g+ l& U$ B& ]As a PCB fabricator I think you need to develop in-house material
# \, L" G+ [2 F# Cproperties expertise.  Your competitors who understand the materials
7 V) N; E  [; D7 {$ [2 V9 \they use and their process limits are positioned to get higher yield
7 s9 y3 l, n3 N* ~percentages at lower cost because of their knowledge.% [) T8 y- t7 y4 u( h  o  C! c
0 W3 s  q. N4 j' O6 P0 r$ ]
I appreciate that you don't want to spend unnecessary money, but at
# v( _9 E& J+ Q' d& ^7 r, Y: Aleast spend the time to learn about what you are using.  I am troubled
7 M, d1 a  p7 w, X% J7 Vthat your engineer knows so little about the materials you use that he % ~! @0 ]! i. y4 I/ H
is surprised by common results.  Once your company understands materials
, W5 g! q7 T8 b9 E+ ]$ o; L2 ?2 Tbetter you may well appreciate the value of commercial stack-up planning + ~% ?* P5 r- D: g5 v
software.
  g6 a% |& r1 g5 O* A2 c1 ?3 _
0 ]( T6 [/ E2 v" Q8 o. mSteve.: V1 i- R; T$ Y7 z6 O

, g5 \4 D2 E  i/ W1 Z: h8 W: AFrom: "Loyer, Jeff" <jeff.loyer@xxxxxxxxx>
# P/ {% C5 o/ i9 l9 P- y- zDate: Wed, 31 Oct 2012 21:33:48 +0000
7 s! Y' v! U, V+ F' u; d$ H" {8 m2 ~* k0 [; q  B' T$ d) q* j

6 e. K0 @) p1 g. PI'm surprised at the tone of the responses to this posting (but perhaps I
: r2 e  U# {* u" T  D0 L. }: b: I+ rshouldn't be, unfortunately); I don't see anything untoward in it.  I would " \* s' R5 I6 R. R' a* y8 f' ]( ]
like to provide some context (with some assumptions on my part) for the message
) D) C2 i9 Q5 H: f. R: J8 X4 Clest other innocent postings meet with similar fates.  I'll also (eventually) - c* X' r$ ]$ P* C; C& d
provide my answer to the question, as I understand it.3 H) j; a7 v/ }5 }' ^2 Z( T% f% H

5 X5 D! x, i6 _' c* d7 l
0 @. C/ N& E# y% lThere is a significant portion (majority?) of the industry which is extremely * M: T1 J! O5 M& q) A3 q2 v
cost constrained.  For instance, to them rotating a design 10 degrees is
; W( r- u0 R9 J- F6 h8 Simpractical, much less 22 or 45 degrees.  Thus, they find other cost-effective
3 {' S, s" N6 e5 ?: [yet effective means of solving problems (such as zig-zag routing), even though
! O# L! o9 v$ D/ Z: g, }6 wthose don't appear efficient to others to whom cost is not an issue.
3 e9 |! ?) X2 Z! O0 E; a
1 X9 M& `- x% j! v6 \4 ?) A
& X2 D0 n) T! x& |9 z( j* u8 l2 _. t1 ~% J( H) ]7 {
There are new pressures being applied to this segment - designers are now not
0 ~# V  x7 Q, O$ k- ~6 f7 jonly requiring impedance control, but are also insisting on insertion loss * K7 x. L$ h: x4 F5 R  m. G
control.  This is a HUGE paradigm shift, very similar to what we encountered
' t8 m' i+ h( `7 F) t0 D/ @when traceable impedance control was first introduced.  That was a very
- T. m! E$ S& Z) a1 kchallenging evolution, and this will be also.
% l' g, H- {2 r2 C" |# f/ x- p- j) N8 {$ C& C, g
6 Z2 G7 y* m  b4 H% X

9 g5 `2 s- }9 o8 g: v9 p5 \/ oAs an example, PCB vendors are now being advised to smooth their copper, after
  K- N) m2 l+ E4 W$ S! [years of purposely roughening it for best mechanical integrity.  It should come ) [& k0 @* N1 h' B2 X9 ?2 C0 t  @
as no surprise that this is not a trivial change, considering the effort that
' O8 J+ T. ?- k) i8 e# Ohas gone into ensuring mechanically robust designs." X; I4 _- c! R& D6 k
& o* s. \" k3 \  e, m* b) X
* L0 _( d6 f" r4 M8 ]5 M. T% _
6 e) a1 k% j3 f8 U3 d# {
Likewise, many other basic assumptions that we've been able to apply for years
3 Y$ r! U3 R1 o5 G. Gare now being drawn into question, and PCB vendors are looking for help to 6 y: ^) {: L# t4 T
intelligently and cost-effectively explore options - "How much effect does / I* W* Z6 j3 q
rougher copper have on insertion loss?".   I believe Terry is highlighting the 5 l. {; H2 i& `$ ^
fact that, while there are many tools available for impedance prediction,
' @7 t4 j  f0 ^+ v" N" }; _& ninsertion loss modeling is much less accessible.   I don't think it is
# z1 I3 q" M- Q1 x& n# N5 ninappropriate to ask if there are cost-effective, reliable tools available to
) M- E, Y3 L: s! [predict insertion loss based on a proposed stackup.! r$ d: R2 ~/ T( B1 o* _3 A

) n" k: G1 `. f6 e7 ^- ]  }
. |; @8 F8 T8 z6 K& Q3 J: s, \* t: v# f% _9 O% `
Unfortunately, I believe the answer to the question is that there are no ) K  D4 p1 S1 k4 k" l8 x
reliable, cheap (~free) modelers available to predict insertion loss.  And, the $ \6 S: j. a2 |" a, j4 k
ones that are available require a great deal more knowledge about the stackup $ H4 r, ], S; @7 g2 D. ?
than impedance modeling does, and that information is not easily obtained.  
5 p8 Q' z% E0 ]: D0 w; W- o' O5 NThere are some of us working with a vendor to test their modeler against a 7 O9 Z4 z- m5 t0 Y6 V
variety of stackups and we'll present results at DesignCon.  My personal goal . U5 c0 y% ?: a: F" t9 [, Z- H
is not so much to test a specific modeler but to judge how effective a modeler ) J0 U9 }) j3 J$ @
can be given information that can reasonably be gleaned prior to building with 5 v/ U5 b0 i9 Z' Y
various materials, copper types, etc.
$ H6 d1 l- Y6 l! k5 K. _% c/ d( F7 }2 b
. _, j  x9 {7 |+ v+ o, l5 w! h- Z
: }& q; Z  c) v. S
& I9 K( k  {  m3 X1 \: T2 ~In the absence of a modeling tool, or in addition to one, I believe empirical
+ B: b/ a! T* ndata is the best predictor of insertion loss.  To do this, however, you have to . U0 F# u+ I* t0 R
build a stackup representing the final design, and it's not clear at this point
% W, O4 T1 |1 K* ^  Nhow broadly you can extrapolate those results to other stackups.  But, I know 6 E4 O5 C5 x  T4 i
many material vendors and PCB shops are engaged in similar efforts.
+ O9 Q& t: c8 e" P' l8 u# |
, @& I( C& |, r( E" _6 H. v0 R; Y& j) D* e% N) f

5 `+ h8 M0 N$ u# ]: }0 k! bI think this is very similar to what we went through with impedance control -
1 c4 l8 b2 @( ^6 ithe shops which most quickly were able to predict and control that
3 w) r: r% a  v$ y  _& x4 U% lcharacteristic had an advantage.  I think successful PCB vendors will need 5 [: d7 n; Y' z/ f
reliable modeling software and empirical data on insertion loss for their
- N/ }5 V% Z7 p  z9 r" l- E, @particular choices of materials, etc. - they will be able to find the most cost
, C$ J3 f$ ]1 I/ Eeffective solution.2 n1 \. t7 h7 Y# k2 v" a9 y

" x- ?3 _4 s0 J! b$ D1 ^! R$ G- T7 ]. L$ v
+ ~* V5 K9 e; o  e/ K$ r/ z
Bottom line: I doubt a reliable modeling tool is going to be cheap, but is 6 ^! D8 F; k7 B, e  i
going to be necessary, and you'll want to compare any tool you do purchase
% Y4 }' B. C* N) p, M, k! Pagainst empirical data before you trust it.
, G: _  D5 D+ E* e; |+ H: V" e& q1 ~& l1 i! G( Y5 A
& E5 n- O$ t) _) `5 B$ p6 v
4 `+ ]) f/ o! a6 ?2 ?* c" |
I hope this helps,7 W4 L$ `' v: ?* G% d, s5 W

# l" s: a$ f, ]( i( {- K4 u& ^5 VJeff Loyer4 R/ p- o- U$ D7 O3 T$ l
& p% `) _' W/ R2 r' }

  t5 Q6 Z; D  l6 ]: z2 Q; c" h/ gFrom: steve weir <weirsi@xxxxxxxxxx>
5 L# \: T9 y% y$ @Date: Wed, 31 Oct 2012 20:14:41 -0700
& c1 ~2 K+ v" q% g, d2 e
$ M0 H4 a8 Y& v) _( g$ P * K. G/ n! w" z
Jeff, given that the only two responses were Scott and mine, I am : Y- `& }& x4 N) u' m
surprised that you are disappointed with both.
0 a7 _+ }2 z' o2 O# m! k) |- K% U3 C' }; f) T$ n) E0 D
In a fabrication market filled with intense competition it is up to $ c& W  S- v; ]
individual players to keep up with the technology requirements of the
# j6 _; v2 S/ qmarket or get left behind.  The task is not simple. Depending on how far 7 P- X0 y9 I7 {' |1 k
up the frequency range one needs to go, dialing in cost effective   ~( }; u& J9 e% |# ]6 ]" B( x
process requires substantial skills, time, effort and serious money.  It
/ I( k9 X; `- l) erepresents competitive advantage to OEMs and their partner pcb fab 4 [5 A# C4 F' f6 h( b: F" ]
houses alike.  Neither who have invested are likely to hand over that
) X0 }! Y. a4 `$ x: o5 X+ tkind of advantage especially when it is so costly to obtain.2 T$ S6 H/ f5 \8 e! G% @8 b

, l! y2 h' p5 H0 FI don't mind that Terry is looking for a solution on the cheap or free.  $ ]; j/ H+ k$ e3 u' z+ {
If one could obtain such a sweet deal, one would be foolish not to take . n, [3 C% }: `7 N2 \* R) o
it.   I am troubled that in this day in age, his organization hopes to
5 b7 i0 l8 G' {! \* N, oaddress a sophisticated issue before his technical staff has a grip on : M5 p, a, I1 |3 K1 F2 S
the basics.   I fail to understand what you find inappropriate about
8 `5 L9 w% K; c' ?8 \that concern.  I would rather yell at someone headed for a cliff to stop
( ^# e/ |& o/ l3 P0 rthan smile and wave.
; R' c6 o* m* m+ f) D0 F1 H4 v3 J+ A( D8 e4 ^
Best Regards,3 ]$ J- Y* S4 m$ [

7 B/ T& \: u2 P4 Z* y7 J4 v- Q
4 i, W; E0 A5 X' h. F, n7 |$ eSteve.# J+ T) [& {0 K) r/ J% j
( y6 B8 V1 `7 m, t9 b3 A1 w1 w
From: "Loyer, Jeff" <jeff.loyer@xxxxxxxxx>
) i3 V0 v3 ~7 b  l6 A' T: T: W4 [Date: Fri, 2 Nov 2012 15:37:46 +0000
6 X, t! b8 {5 E, B9 c  y) @  N8 J" _# I/ m5 B) v: S

+ v. u; k; o9 u+ Y3 v+ v0 A: \I realized we hadn't answered the basic question - "why does a high resin ) h# e7 w, ]9 q
prepreg give lower loss?"  The prediction of loss vs. resin content isn't
" z! R1 D7 Z8 j/ H% }# c0 ]7 O" W4 }trivial; as Steve said, a tool which allows you to model loss for the various & J- d1 S& }% m: N8 j
scenarios should be on your Christmas wish list.  Here are the factors that I 1 c+ y; I3 [1 |0 u: f
know of (thanks to Richard Kunze for clarifying things for me, and I welcome $ I4 g4 T/ w4 c( U7 c5 e
others' data/opinions):
& W$ B8 p5 ^7 o  W* Resin has a lower Er than glass! Y; c3 h7 b1 i! P

+ P7 i2 O% b; r  g3 E; o3 d     * loss is approximately proportional to Df * sqrt(Er), so lowering Er
& f- W+ R) X* A0 `: I! h/ @lowers loss
* \" f2 }. _" b" y3 B# f7 i/ `! g+ @8 K
     * lower Er allows wider traces for the same impedance - this may decrease
  W9 R) l3 D* c* \4 |% [loss also, V. m, ^5 L. S; }

- k; p. c" ~# }6 g* But, resin is more lossy than glass, so Df may increase, P- T3 e1 e* J) a5 y- E

/ u' Z6 I' O( n& I% j% _' E     * for standard FR4 constructions, this is especially true.  The data sheet
; o( q, e, k7 d6 d" j7 ifor IS370HR, for instance, shows Df varying from 0.0177 to 0.0247 (1GHz), 2 \3 V: R: y  H8 d' X. O- g% D5 }
depending on the resin content: F0 G9 t' G6 }! Q6 H1 |

8 |! F- b1 D! ~' s6 r     * for low loss materials, this doesn't hold.  The data sheet for Meg6 # v# Q- d/ W- ?0 k3 a; a
shows Df constant (0.002 @ 1GHz) for all its flavors of prepreg
! y2 n9 e7 R& x5 l& U" T3 {' U0 v" W1 p% m
* Where the factors dominate will depend on your relative conductor vs. : W7 X- }4 ^9 I' {5 |0 H
dielectric loss effects: for FR4, dielectric loss dominates at >~1GHz; for 8 d3 y3 r5 n6 T
low-loss materials, conductor loss dominates up to much higher frequencies (as & K( {9 g  |# q) W* E% D0 u( J. |
much as 10GHz).0 T3 X; u0 _, f. X

& H% X/ K6 x7 b1 l8 i4 C. S. b/ X  I3 w+ n! _6 D: ~5 r( z( p# D
+ v/ P. g$ i. H4 H; M5 e( a
In your particular (low loss) case, the lower Er of the resin-rich case is 1 _7 J0 w- Q: {7 s# D# \9 y
trumping the Df change (or lack of) so you get lower loss.# A% ^/ _: Y1 H

( n, E: G* |0 y& w* i- f4 @. c
) D  |$ X; V3 Z, |/ b: E+ f7 x8 g2 B7 m0 l
Only a tool which takes into account the properties of the specific material + Y5 S. o1 ~% a
under consideration can be expected to give an accurate prediction of insertion ! o1 M0 M  D6 A8 C. z
loss for various resin contents.; ?* T0 \  Y: z. ~: N

7 H5 m0 |( Y+ k4 G' Y, C
/ Y. ]& [! l- y! p1 H0 J$ D4 |# a9 _6 k& |" }
There are also environmental effects (I haven't heard or seen these stressed at
7 W' Y& X+ e6 E, q- rthis point, though that may change soon):( B% |' i5 m% ?5 y; `% ]
/ N; k+ a, r: x5 B  B
* Higher resin content will absorb more moisture, and thus your loss will be
# M% x: L$ M# M4 n: F; Nmore susceptible to humidity effects! \3 p( e! O7 g! l5 ]
* y8 M0 Q3 l* j& Q  }
* There's a difference in how the various materials' Df changes w/ temperature % M: W' L+ A& \+ S+ z+ R
- more at DesignCon4 s- \! P" Z7 e! d& {5 }& L( }1 ?4 V

" y! u; S3 _2 O5 Y& {  _) L& n& d6 s  p, {+ V) ~1 B( B, X

% T! h3 ^& S% T6 l! AI hope this helps,. {5 ^- m% F' z0 W7 a) [# f. {
7 G! `9 Q$ Y0 w% q* ]$ ^+ E* `( ?
Jeff Loyer: l# H' ]2 Y- J% b! m( E

' Y( [& g( D( n, x& g( [7 H. sFrom: Scott McMorrow <scott@xxxxxxxxxxxxx>& `5 M/ D, E' z1 @! x1 N
Date: Thu, 8 Nov 2012 09:12:46 -0500$ R9 p) d3 D% |# A  B1 ?3 v( [
  s: B8 Z( y: n2 ]- S$ {: ~

9 G( L. f1 W  Q, H$ d# |& tJeff
5 E) k$ C* t8 |' u% [A few quick comments.  Although the tanD of Meg 6 is stated to be flat, it2 q% j- c1 e! f7 ^# g7 A9 x
is not if you measure it.  The manufacturer reported characterization in
7 d4 B& A& L9 b! R1 c) nthe data sheet is not correct.  Causality is violated when tanD is flat.2 q1 G& i8 |& d( v$ y
7 r. A# O8 v4 H" V
Loss is generally due to molecular dipole losses in the material.  It can* q: o7 ?* Q8 N3 }. U( C; e4 Q
be low for high Er, as is the case with ceramic.. M" @3 b/ W/ `7 b* j0 e: t% [
1 W# s* C" {8 e$ v
Hygroscopic loss is due to molecular polarity. Polar molecules "glom" on to
8 A0 P3 d# J0 p7 V, ]0 xwater molecules, which are also polar. Same property makes the material
+ l( Z1 M+ s! U$ j9 h% @extremely "sticky."6 z7 H( B5 M: G
2 a/ H+ {1 T/ E2 c; r  C
The paper that Jason Miller of Oracle and I wrote for DesignCon last year" y" v( T2 F3 ?4 B  R' {* }
covers some of the impact of temperature and humidity on measured losses.
  s5 u. Z. _$ G8 m I don't have access to my storage server right now, otherwise I'd give a2 M+ n6 s! p2 m, p& r% h1 v2 ]. [
paper citation.
2 \4 s, r1 Q4 w2 O, W$ W  s8 W3 M* F1 r1 S/ N  s% e8 V+ d
regards,
! e5 a& f, `) z/ c2 E  T+ n5 Q2 `
8 _, V4 {9 [9 R0 G. KScott
* T/ N5 e" H  ]. Q# `- u8 C
: @7 x. L1 K$ A. ~  n' EFrom: Kirby Goulet <kgoulet@xxxxxxxx>/ o) O' f7 t: d( Y
Date: Fri, 9 Nov 2012 11:08:49 -0800 (PST)( Z* V8 D5 k* h* W
* }5 s6 a: c  L0 A' [  S/ W5 O

) X' E7 x$ J3 ]4 y% b: _' s3 I+ B. ]) XIt's not production quality software but you could try the mdtlc calculator to # W* j; x+ Y" h7 H; L. h: k: T
experiment.  I tried Jeff's example and it seems to point to an explanation.
9 r/ s' a" u% n1 D( X# ] The source code is available so you might extend it to do what you want if you
1 Q& D8 d2 G+ mhave more time than money./ E% D) \/ W, q( {  x
It looks like a race between loss due to increasing loss due to resin and
, g# g% \( y9 odecreasing loss due to wider traces.  There is a bigger increase in the resin
( l$ s9 S! y6 M, }7 W1 vcontent for the IS370 case over the IS415 case.  Not only that, but the IS370
  I9 _/ Q6 H1 g4 O6 N# \4 r/ gresin is lossier: 0.0169 versus 0.02984 so the winner is increasing loss.  
% R+ t  ]; m, F6 Q0 \7 X7 x( r  \3 }6 k, @# \  u, p8 i! k
From the field solver,
" A; G8 b" ^9 D0 p' {4 A4 A* R4 l+ l. k, o
IS370: the effective dielectric loss went up 14.7%.  The perimeter of the
. x  Y$ u7 E$ H+ N0 {( i4 Z+ Hconductor went up 3.6%.  - u  {/ s. {' v" L& I3 U3 X; a
IS415: the effective dielectric loss went up 6.7%. The perimeter of the
8 K" s; g' U! O9 ]+ k; Gconductor went up 5.7%.
1 s! K9 y) s# v
" h1 Q( ?- D/ \* vIn the second case, overall dielectric loss is a smaller fraction than the , F' ~+ \5 W$ `$ Y6 _
first case.  The missing bit of information you need to add is the conductor
* @# {  B  u' r+ `4 Jloss.
2 C3 m: O! i7 {6 S' r8 e$ v2 j) O' x' }( p$ J2 q4 W8 A
INPUT PARAMETERS:
! r9 K+ H0 }9 u$ S
, D. u; \/ h$ i% b      Layer             Thick   Specifications ( f3 I6 f6 m8 n- _% V
      Copper Plane Top   1.30    Opening w=0.0  offset=0.0
' ]1 W. M% G8 O) s7 r' C      Laminate Layer 1   3.90    Resin Content  57.0% 3.4-4.9 3 x$ j7 Y+ P  d9 B4 C# N
        Signal Layer 1   1.20  4.3-7.2-4.3  Etchback=0.00
3 |9 L! ^% d; r$ ?      Laminate Layer 2   3.90    Resin Content  57.0% 3.4-4.9 " w7 o! Q1 M( H8 Q( z# I
   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.08 M4 C  @2 U; C" E+ A( G* m
9 U& p0 C" N+ m: q4 V
      Layer             Thick   Er    Loss Tangent
6 d+ Z  q7 n+ t- N) L" X$ C      Copper Plane Top   1.30  3.20   
* V8 G) z" c# p$ T  \# m      Laminate Layer 1   3.90  4.02    0.02100
/ g, Y& A; x7 V, q7 c3 {        Signal Layer 1   1.20  3.38    0.029847 S: H' ]8 O  _) c3 W/ U
      Laminate Layer 2   3.90  4.02    0.02100
: x6 i& [/ y# V   Copper Plane Bottom   1.30  3.20: C9 \; Y& N0 q8 X3 |
$ U$ n% Y  I7 ^
DC resistance by dimensions:7 ]0 D4 Y, Q- w& i+ a% ]
Rdc_trace_1= 131.53      Rdc_trace_2 = 131.53  milliohms/in 20C2 U0 u) d, A- s0 B

0 q) z1 o, s& b  R DC resistance by pixel count:
- A  M! m5 ]) D( o Rdc_trace_1= 131.531     Rdc_trace_2 = 131.531 milliohm/in8 g$ P* W& _5 A
C_odd      =   4.221 pF/in    C_even =   3.968 pF/in3 D8 a) P9 }- ?
Er_odd     =   3.923         Er_even =   3.947' O6 h# Y+ B! ?" K# o' ^
Loss_tan_o = 0.02212     Loss_tan_e  = 0.02184  7 U4 p* V) w+ o
Delay_odd  = 167.801      Delay_even = 168.314  ps/in.! Q9 ]& Y: S( F8 H1 V( ~
Z_diff     =  79.501  ohms   Z_comm  =  21.209  ohms: c% N1 A" Q$ n; h: |
. L% r" p: m4 O$ ~& {' \. j& s* K
Simulation pix map 122 pixels high by 800 pixels wide.
! F  d8 j  k4 k6 ]1 g293824 bytes allocated for bmp.
7 }6 c' h! p$ d9 y# v $ y9 h1 p0 j* a5 z$ `
INPUT PARAMETERS:( l1 v- b  O" S" Y0 a0 P- i
4 {) s' |5 L7 O+ a$ p
      Layer             Thick   Specifications
- l+ Q& e# o+ n2 Y2 H) `. m  w      Copper Plane Top   1.30    Opening w=0.0  offset=0.0
3 S! N* `( t) u8 S. ~* J: t      Laminate Layer 1   4.20    Resin Content  75.0% 3.4-4.9
5 j; J: K. Y) \; z* x$ i+ @4 M" n$ P7 [        Signal Layer 1   1.20  4.5-7.0-4.5  Etchback=0.00& E* x/ ?' {4 ]. W" b; G$ C
      Laminate Layer 2   4.20    Resin Content  75.0% 3.4-4.9
9 _% G0 Z, i9 Y  ~# g   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
, j% s& w( Y  }  x ; O4 K7 D4 E$ E: _3 z
      Layer             Thick   Er    Loss Tangent
! }2 p, o& i8 I# c; R) ?      Copper Plane Top   1.30  3.20   6 H0 x0 B; o2 L* v# a
      Laminate Layer 1   4.20  3.75    0.02470 3 \" D+ ]( V% C+ k
        Signal Layer 1   1.20  3.38    0.029846 I1 L- t6 t& |3 _
      Laminate Layer 2   4.20  3.75    0.02470. G5 a- L+ b- j; \$ X5 x- p$ R
   Copper Plane Bottom   1.30  3.20
. \' n: Y- e) P8 Q0 O, ]) \* \ " f+ h  @3 O+ J1 n# _0 t1 L# \- {8 N
DC resistance by dimensions:) P" q  K+ U4 {: e4 D6 M
Rdc_trace_1= 125.69      Rdc_trace_2 = 125.69  milliohms/in 20C
. y, Q" v+ U+ D: u5 f+ I
- F1 h, O7 P. |  l# n6 g8 F DC resistance by pixel count:
, U' H4 Q7 i$ y+ k" q7 [5 a Rdc_trace_1= 125.685     Rdc_trace_2 = 125.685 milliohm/in  h; z: E" |; Y6 E) V
C_odd      =   3.929 pF/in    C_even =   3.624 pF/in
& M5 Q: P$ w( q5 c: o) c Er_odd     =   3.694         Er_even =   3.710
% k' f& Z+ ~8 F0 v Loss_tan_o = 0.02537     Loss_tan_e  = 0.02518  
' A6 R* O% H, J; w3 _6 \) P' i+ \ Delay_odd  = 162.844      Delay_even = 163.195  ps/in.* g/ B0 r/ o! K, o0 i
Z_diff     =  82.900  ohms   Z_comm  =  22.519  ohms8 [; K& A% b! E. Y9 M
* d0 [3 w4 }/ r2 ^6 X9 j, B* m8 P
Log file save name:
) m2 ], n+ Q. l4 m- u) L- @mdtlc_12100946383.txt
& }9 B# t4 R0 O+ V: t: \+ y$ Y$ N
Simulation pix map 118 pixels high by 780 pixels wide.
  K" F( ~# Q" Q3 _* W277144 bytes allocated for bmp.: y8 K# m* f; g* b) @
6 a3 G9 v3 y8 r3 |2 U0 m
INPUT PARAMETERS:
  v; q& d; P" ~$ f) U* O0 ? 6 @, [3 z. F% @' f
      Layer             Thick   Specifications ; |4 d2 }5 k7 m' C. j# S9 T# A
      Copper Plane Top   1.30    Opening w=0.0  offset=0.0
0 i5 ?* w* x  d' _+ {3 D; d      Laminate Layer 1   4.00    Resin Content  45.0% 2.6-5.1 9 P/ L% B+ b% W% R6 }) _& b/ E# O
        Signal Layer 1   1.20  4.1-7.4-4.1  Etchback=0.001 i6 a3 i8 M; ^  ^- f
      Laminate Layer 2   4.00    Resin Content  45.0% 2.6-5.1
/ [1 y/ J. Z$ }& L5 m) ^. W   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0" b3 Z5 \3 N- E9 r- E
* u* e( M# u$ f4 M& X
      Layer             Thick   Er    Loss Tangent+ F' S, I$ f  a0 u0 S
      Copper Plane Top   1.30  3.20   4 q5 O2 g8 |+ d* |+ R
      Laminate Layer 1   4.00  3.98    0.01140
. l; j* Q0 w- ]/ u/ _; T- u/ x' w        Signal Layer 1   1.20  2.64    0.01690
- u0 C0 }# B8 l% m      Laminate Layer 2   4.00  3.98    0.01140+ C$ ?3 g+ J/ Q8 B
   Copper Plane Bottom   1.30  3.20
4 D! m8 Y9 L5 l
, O+ C6 {1 d7 x! d3 ?3 ]% M DC resistance by dimensions:
( U: N# B! |) b# s- Q Rdc_trace_1= 137.95      Rdc_trace_2 = 137.95  milliohms/in 20C5 @% X  k+ P  E4 n, E
3 U4 s3 \6 t: F& I
DC resistance by pixel count:8 U. b  s$ |2 C
Rdc_trace_1= 137.947     Rdc_trace_2 = 137.947 milliohm/in7 }5 W* s7 Z3 D$ o* M: _
C_odd      =   3.910 pF/in    C_even =   3.695 pF/in
1 w) }1 A( _% O  x Er_odd     =   3.769         Er_even =   3.8177 B: ~& H9 Y6 [# \5 ?( I
Loss_tan_o = 0.01202     Loss_tan_e  = 0.01189  
, m% B- W: H9 ]# [9 E1 B5 [0 @& `, j Delay_odd  = 164.490      Delay_even = 165.524  ps/in.% \0 h: Y, ]) `+ ~' w" U
Z_diff     =  84.134  ohms   Z_comm  =  22.396  ohms
8 R" i( {) S0 o : ]) j3 V+ R, t7 b. C
Simulation pix map 118 pixels high by 795 pixels wide.8 o3 }4 ?+ e7 g- a
282454 bytes allocated for bmp.
2 \% {' \# i$ H. E; [
  B% Q; c) ]  i0 _# P7 K  VINPUT PARAMETERS:
6 p4 L, z& o5 h: m' _7 t! L 6 x) |, C- i6 g3 R# v/ z; b
      Layer             Thick   Specifications 7 a. c6 \9 d% c
      Copper Plane Top   1.30    Opening w=0.0  offset=0.0, ?- u' k! R1 ~
      Laminate Layer 1   4.00    Resin Content  54.0% 2.6-5.1 " q8 @2 I7 ^0 E! X+ _
        Signal Layer 1   1.20  4.4-7.1-4.4  Etchback=0.00
1 q" ~5 s5 L/ Y1 U" f! P9 S      Laminate Layer 2   4.00    Resin Content  54.0% 2.6-5.1 ! G3 ?4 x' A0 p
   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
( ~5 w5 ~' b$ _+ P4 _7 P/ H5 D/ U/ V , m! V2 W& B% P* Y( U
      Layer             Thick   Er    Loss Tangent+ m( `% \0 `0 Z0 B5 O
      Copper Plane Top   1.30  3.20   
  z% s$ r1 E# o% H, r/ j' j8 S" u6 M7 v      Laminate Layer 1   4.00  3.76    0.01230
' E$ W8 q1 |+ L1 }2 t        Signal Layer 1   1.20  2.64    0.01690; h9 _5 y. {% `) E' A1 d4 |
      Laminate Layer 2   4.00  3.76    0.01230
: y$ y- f3 Z& y* h! j' v   Copper Plane Bottom   1.30  3.20* e; w# }) T; k0 k
7 \' y( }$ n7 a# E- G8 J
DC resistance by dimensions:$ [7 n' L* w6 B! s7 E5 ]
Rdc_trace_1= 128.54      Rdc_trace_2 = 128.54  milliohms/in 20C7 N; `, Q, {) A1 Y! I4 ?7 {

3 A% x6 A; h6 Y DC resistance by pixel count:6 U$ U% V4 ?% z$ x6 f* ]+ i
Rdc_trace_1= 128.542     Rdc_trace_2 = 128.542 milliohm/in
) r/ B" _" A  Y( n# Y8 X* f2 X C_odd      =   3.865 pF/in    C_even =   3.623 pF/in
6 S. c5 m! Q4 W& ? Er_odd     =   3.588         Er_even =   3.631
1 R* W$ t9 `4 G* K5 [2 B1 y2 A% m0 n Loss_tan_o = 0.01283     Loss_tan_e  = 0.01270  
' n' a( C: x, N' p  g, x' g Delay_odd  = 160.480      Delay_even = 161.455  ps/in.
3 W7 s, T9 P6 i9 J Z_diff     =  83.041  ohms   Z_comm  =  22.280  ohms
; l2 E. v: Q8 Y( G- C# d8 B: K3 c- J8 {: k: `' h
看完之后,我有一事不明,我总是分不清奇偶,不知道这两者到底如何区分,亲,你能告诉我吗?
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏1 支持!支持! 反对!反对!

4

主题

141

帖子

2159

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
2159
2#
发表于 2012-12-1 14:21 | 只看该作者
我以前也分不清奇偶,后来强行记住了even是偶,搞的后来一看到odd,就要先想even是“偶”,odd只好是“奇”了,很是麻烦!
) X1 n" x* F; X$ S1 P" r; f' D你这一提醒,我以后可以换个记法了:odd是3个字母,“奇”数个字母;even是4个字母,“偶”数个字母。哈哈

评分

参与人数 1贡献 +4 收起 理由
beyondoptic + 4 方法很给力

查看全部评分

2

主题

45

帖子

890

积分

三级会员(30)

Rank: 3Rank: 3Rank: 3

积分
890
3#
发表于 2012-12-23 21:19 | 只看该作者
晕, 版主居然转贴到这里来了!8 K/ C6 f  F8 v2 ^; e0 H  V
汗!!!{:soso_e110:}
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

巢课

技术风云榜

关于我们|手机版|EDA365 ( 粤ICP备18020198号 )

GMT+8, 2024-12-23 17:48 , Processed in 0.061273 second(s), 32 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表