|
本帖最后由 Xuxingfu 于 2012-6-9 19:44 编辑
3 @! H, Z) z& G. o1 ~4 e: u* _
" Z5 p" X: b. l* m; D资用功率增益圆:
3 g" i" \8 i& L( Gga_circle()0 w+ i/ Q4 @! u+ v9 D3 D2 T
Generates an available gain circle.
5 t) `+ M: K. I. t6 C& M0 ~
- B' D- m9 F+ Q: \语法规则Syntax:
# v7 r$ s- C- n. N2 W8 U: r, g- g6 k& D" R: s4 \6 G- [( o
y = ga_circle(S, gain, numOfPts, numCircles, gainStep)5 |8 g5 c3 n4 ?8 f0 V* ?. Q% @% c O
/ H/ n. \( m' I& ~8 ^# K0 f
* z+ k9 p4 C# ~5 @+ V7 D
: m" g1 k# b- n: R
Default value for gain is min(max_gain(S)) - {1, 2, 3}
r- {) P5 u( I; @. t$ U$ E7 d
6 `8 `; T n8 I7 x) lExamples9 M2 B; r; v( X5 h9 o
circleData = ga_circle(S, 2, 51)
4 t- g' H; m9 i- d3 U6 X& ^0 U% fcircleData = ga_circle(S, {2, 3, 4}, 51) return the points on the circle(s).
0 z2 I* Q, c. ]circleData = ga_circle(S, , 51, 5, 0.5) return the points on the circle(s) for 5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
# @. q1 f0 G6 Q' RcircleData = ga_circle(S, , , 2, 1.0) return the points on the circle(s) for 2 circles at maxGain - {0,1.0}+ O3 ]8 t& X' V1 U7 H8 t
+ R" V6 w2 Q7 k% R! p! b( Z此功能用于在小信号S参数模拟。
% n0 V! r" ]' O: p函数生成常数资用增益圆源不匹配造成的,圆的定义在指定的增益源反射系数点。1 k7 j# G8 C* Z+ n' D
! G+ B8 {3 z9 v3 g4 Z
This function is used in Small-signal S-parameter simulations.
; x! \+ @, }1 Y2 N9 XThe function generates the constant available-gain circle resulting from a source mismatch. The circle is defined by the loci of the source-reflection coefficients resulting in the specified gain. : H5 j, y9 n: V. ~: Y
5 R* L& ?* i* e* X& z5 p) z
A gain circle is created for each value of the swept variable(s). Multiple gain values can be specified for a scattering parameter that has dimension less than four. This measurement is supported for 2-port networks only.
: o0 k) f" h8 }# Z: h" CIf gain and numCircles are not specified, gain circles are drawn at min(max_gain(S)) - {0,1,2,3}. That is, gain is calculated at a loss of 0,1,2,3 dB from maxGain.
+ ]$ ]- i2 m6 E- C
1 T+ V( B9 n0 kIf gain is not specified and numCircles is given, then numCircles gain circles are drawn at gainStep below max_gain(). Gain is also limited by max_gain(S). That is, if gain > max_gain(S), then the circle is generated at max_gain(S).5 b+ B' k: k7 c; R. T/ G$ r' e
7 c' f2 N% S. j4 B e
圆方程:
5 u& ?; {8 |+ Y: a
% F% T. s0 i1 |4 c1 U9 c
7 g% s ], X3 c4 ]4 E* D* ^* E
6 d8 r' L# {- j! p |
|