|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Table of Contents
- p5 |" f2 |/ l8 Y 1 Preface
" }" ?& Y4 e8 l& e$ s7 n ? 1.1 Preface to Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 X4 O7 ?+ k8 j* z6 n E
2 Matrix Methods for Electrical Systems% f5 O6 j% h! X) A: B# W
2.1 Nerve Fibers and the Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 S6 j% E* m; |) \6 c( g5 F
2.2 CAAM 335 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. t: \) M+ J& ^8 ?$ E
3 Matrix Methods for Mechanical Systems
1 y1 w& n6 [$ ^ V/ y6 c1 I1 a 3.1 A Uniaxial Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1 [6 ~! Y; n; i8 K& e0 Q+ u 3.2 A Small Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 {+ t" N* O* W9 U V& f
3.3 The General Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 }+ {* l3 s5 z5 u. y 3.4 CAAM 335 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 _2 _- ^% h8 O$ h4 C3 a
4 The Fundamental Subspaces* H0 F- H! }' P7 u: ?0 A
4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 c c6 W% H0 A/ T8 @5 f; o
4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
, b5 X! g/ v' I; h# k4 c6 c) U0 p. C 4.3 The Null and Column Spaces: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
& Q% K3 k0 W6 o 4.4 Left Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38) _& G6 e: G1 M+ U6 s
4.5 Row Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39+ Y1 M5 N; X+ d: ?; _& l j% Z( A) E
4.6 Exercises: Columns and Null Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 H( ?9 b: j/ E: x; K. W+ i7 x 4.7 Appendices/Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
' ~& R% e8 x$ P3 J: ?- p. r3 C 5 Least Squares
3 ]8 ~' d8 q% ?5 j 5.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45. F: q4 J, ^5 p( q) g
6 Matrix Methods for Dynamical Systems
8 F9 i2 P# P4 }1 U; |: n 6.1 Nerve Fibers and the Dynamic Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51& d0 b1 T# |1 g7 P! U# Q
6.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
/ s/ I4 ^7 J3 h 6.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4 b9 F' r' {! Q0 J7 p 6.4 The Backward-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59. C b9 o2 x/ Q* a, n) c
6.5 Exercises: Matrix Methods for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
* D7 s! p2 Y0 k2 W; A$ ~: B: O 6.6 Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
# e$ S" u" ?6 X( T: G 7 Complex Analysis 1; q' C& z# E. I5 O5 @) C* @
7.1 Complex Numbers, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73; t% Z8 y% N; h6 @- F& \
7.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 [0 L8 ]; r) Y$ c3 p* H" c% ^( {6 M
7.3 Complex Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77/ x& O7 o: j3 U% }: ?( L- t. c2 \
7.4 Exercises: Complex Numbers, Vectors, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
% e0 ]+ A8 n$ G5 P4 L1 Z B5 Z6 w Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
) I$ b- I" U: f 8 Complex Analysis 2: [4 y: n0 w4 P
8.1 Cauchy's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
0 t7 U; Y# G0 }3 i0 A* I 8.2 Cauchy's Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88# r/ I/ @9 ~9 v4 \
8.3 The Inverse Laplace Transform: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
" l) B& x- d. K 8.4 Exercises: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93. i0 y: z2 t: r B
9 The Eigenvalue Problem
. c7 N @0 v* P$ a 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
1 m! `+ @7 Z: k! N 9.2 The Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96- U7 e# Y0 u8 X2 b! T' M6 Q* E
9.3 The Partial Fraction Expansion of the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97; Q, A& v; q4 M% x# x0 T2 G0 F" q
9.4 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
* Y+ P$ E. I/ ^2 o. M iv, \6 V) b6 z0 _+ h# b! h7 ~# ~ z
9.5 The Eigenvalue Problem: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
- V& u; p3 E1 { 9.6 The Eigenvalue Problem: Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
: W0 x6 y0 C4 H6 L' n' i8 { 10 The Symmetric Eigenvalue Problem6 q/ o3 Y& z: j v; }
10.1 The Spectral Representation of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103( i1 i. i7 U( w% _9 o5 a2 i9 k9 c
10.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7 C' [! H4 `, b: V# A2 X 10.3 The Diagonalization of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108* a# H, p c( T U/ ]( I
11 The Matrix Exponential
- c3 d* v- P) X+ N 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 q+ [. g4 q2 n: T( m" b 11.2 The Matrix Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113* U: @) t8 `' B2 T. W, T9 ` r
11.3 The Matrix Exponential as a Sum of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
# g$ x3 h5 b6 y( [4 j; e& K 11.4 The Matrix Exponential via the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116, K! C7 ? a/ q* e! |
11.5 The Matrix Exponential via Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
& x8 M3 ~' V8 U! H* k 11.6 The Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
; `# |+ }$ I6 O7 a* [- Q4 i 12 Singular Value Decomposition" Q3 O1 ~' |! |3 A
12.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 c+ V) U( f) U, U. o+ h, p Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130! [8 {) r S$ c0 M/ q
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134: H' w/ q' Z) f; r+ I- p! N
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136) \: X# o2 Y/ L9 N
Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1391 k; }$ k, k# Q* J" U6 B7 W
|
|