|
本帖最后由 Xuxingfu 于 2012-6-9 19:44 编辑 8 m+ s3 P4 {" ]( q) E8 I2 k
) x9 ~ ^6 C, j, \- k资用功率增益圆:
3 u4 | P2 R$ o- g7 fga_circle()
" {& d; t$ Z) J. [ q0 _5 IGenerates an available gain circle., t* g/ M; u' ?$ z$ X3 ?: [
5 ^% j6 P; h* [7 |5 r9 \
语法规则Syntax:. l' [" D N; b% ~- A0 ?' h8 v
3 g9 U- \0 [/ s+ f p
y = ga_circle(S, gain, numOfPts, numCircles, gainStep)3 Q7 Z. b+ Q% A, E$ _& t
0 B/ l) Y7 e/ I2 K, `; p
0 _! S' { T# O7 l5 d
x! W! J& r- f3 M5 fDefault value for gain is min(max_gain(S)) - {1, 2, 3}
: C* \- j( |* A0 o: W& I; F; H! [: |4 {- m
Examples7 X& Y" G3 @% N
circleData = ga_circle(S, 2, 51)
( U( F% O$ w! W6 o J& AcircleData = ga_circle(S, {2, 3, 4}, 51) return the points on the circle(s).7 Z5 l4 V0 ^+ _0 E
circleData = ga_circle(S, , 51, 5, 0.5) return the points on the circle(s) for 5 circles at maxGain - {0,0.5,1.0,1.5,2.0}
; u: R0 h+ Y# u4 d2 q9 R1 ?" |circleData = ga_circle(S, , , 2, 1.0) return the points on the circle(s) for 2 circles at maxGain - {0,1.0}
; q' V$ M3 i7 H/ g; p1 r% Q/ {: P- o( G
此功能用于在小信号S参数模拟。2 Z: `' X3 e) k% r4 k6 c$ d
函数生成常数资用增益圆源不匹配造成的,圆的定义在指定的增益源反射系数点。; z) z8 c7 z5 x
u/ X3 w9 L$ d
This function is used in Small-signal S-parameter simulations.
^! q* d* S1 K5 @The function generates the constant available-gain circle resulting from a source mismatch. The circle is defined by the loci of the source-reflection coefficients resulting in the specified gain. % w8 d# T5 \$ L* B( x9 S$ q0 T j
g( f M% h3 q1 }. VA gain circle is created for each value of the swept variable(s). Multiple gain values can be specified for a scattering parameter that has dimension less than four. This measurement is supported for 2-port networks only.
; y, C/ p P) A; E+ jIf gain and numCircles are not specified, gain circles are drawn at min(max_gain(S)) - {0,1,2,3}. That is, gain is calculated at a loss of 0,1,2,3 dB from maxGain.
9 m- d, ?& C# i1 h4 `6 w2 L2 h% E1 N
If gain is not specified and numCircles is given, then numCircles gain circles are drawn at gainStep below max_gain(). Gain is also limited by max_gain(S). That is, if gain > max_gain(S), then the circle is generated at max_gain(S).
2 x( K. E6 a. K1 E/ R, m, E+ O6 |0 o$ ?! Z( h$ {$ u
圆方程:2 r9 f: a2 Y* [1 K' N0 U
2 f4 H1 a5 z4 O2 e3 e0 [ t! {
- |% \1 G3 c8 d; s6 k
2 z: s/ H. m% Q; E5 V |
|