|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Table of Contents
( g, z& q6 x; Z, c3 ?2 h 1 Preface$ v: v% ~/ B G2 s5 i0 s8 C
1.1 Preface to Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 @ ?# p! K; [# f5 L
2 Matrix Methods for Electrical Systems
( c6 E/ O/ X8 J D9 g: \ 2.1 Nerve Fibers and the Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
o4 _! j9 u$ Y0 x5 Z 2.2 CAAM 335 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15+ |6 V' C# _% M- {% x5 w
3 Matrix Methods for Mechanical Systems
* [2 n& p# s7 ^, m( N 3.1 A Uniaxial Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
$ g1 `# ?2 l& o# k+ | 3.2 A Small Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22) q3 }2 S4 I/ r5 }
3.3 The General Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 h; ]0 ^& N" v
3.4 CAAM 335 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, X" F: O+ H' K4 f6 ]0 [ Q
4 The Fundamental Subspaces* v3 Y3 x; ~: u6 n, L) u& ~9 H# b- Y
4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 O0 s; T! g# D6 K& E; Z* I
4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 v/ N [, j6 x* e" }& b- l
4.3 The Null and Column Spaces: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
+ S+ [) L( S% e+ o! F1 } 4.4 Left Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38/ B# r6 R" c3 t. ~4 G
4.5 Row Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
% U( d0 x p) v$ { 4.6 Exercises: Columns and Null Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 L, I; ?( ?$ X5 G 4.7 Appendices/Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
) m; B4 b4 n# D 5 Least Squares
' H' i( ]# y8 W( l, | 5.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8 G3 t( a. L- S6 r7 r7 W 6 Matrix Methods for Dynamical Systems# W4 f- t/ w9 ~+ k0 X
6.1 Nerve Fibers and the Dynamic Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
, \( B# N6 W: x% `7 r) a$ y1 n 6.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8 P6 x/ K, n$ b! C/ c 6.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58( }9 m; m# g$ {, T! o5 \5 v
6.4 The Backward-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59- e( ^% S) }# Y
6.5 Exercises: Matrix Methods for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .602 W: U3 C/ p; g: c6 |5 m1 w/ f# p
6.6 Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
. h! n" W4 F% s 7 Complex Analysis 1
9 x9 g6 U' i$ q2 Q( K. c 7.1 Complex Numbers, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73( y. Z, o3 b# q
7.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75" M, I* n/ X0 y- i' e1 \2 l
7.3 Complex Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
U+ @, I; t" K+ R 7.4 Exercises: Complex Numbers, Vectors, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 ^# Q4 r& P0 G9 [. d" n8 m% [
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
" [- s+ d, c/ Z& [! u/ a; b4 u 8 Complex Analysis 2
; k: ?& {# W1 ^2 E 8.1 Cauchy's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85/ p) I C' W. J# y; C. J1 L9 X: a
8.2 Cauchy's Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
( _* ]$ A" e. Y* W& B 8.3 The Inverse Laplace Transform: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92/ C W- r$ m5 R5 p
8.4 Exercises: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
( y o1 n l! T# Q7 J 9 The Eigenvalue Problem
% _7 a" n' b( P; i) u4 d2 |6 s' @ 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95( i0 N2 u R5 J6 ?
9.2 The Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96+ ?; S4 L2 a4 x v
9.3 The Partial Fraction Expansion of the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97# x D# e- Z: x/ z, @2 ~7 N
9.4 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
3 z- j6 D' q8 u& s% k4 A iv& c9 b% `/ g3 f% Q+ D
9.5 The Eigenvalue Problem: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
& b! F4 i) L& _- v4 t) @5 Z& I8 i6 ^ 9.6 The Eigenvalue Problem: Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
; y- z& F( Q( ^3 y+ W 10 The Symmetric Eigenvalue Problem
/ ~2 ?8 G) h" f N4 G5 @ 10.1 The Spectral Representation of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032 B) A: Y: f7 I2 u K5 e
10.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107& v0 t/ L% w' @7 h: J1 R
10.3 The Diagonalization of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108; R* I7 B% e3 t1 W$ C) i+ t: S
11 The Matrix Exponential
+ r5 K% Q1 B% o. A) ` 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111- H0 I. K$ \) k$ l: p9 ?
11.2 The Matrix Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
' n+ ^0 q1 T8 ^) \) F' J; f 11.3 The Matrix Exponential as a Sum of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149 }; e2 Q' n3 R( m
11.4 The Matrix Exponential via the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
% ]0 q" N% B `* W, z) v 11.5 The Matrix Exponential via Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
- M7 [" ^" @0 ^! P, H7 U( L 11.6 The Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
) t' H) w0 n3 t5 o- c 12 Singular Value Decomposition
8 r# `* ]/ A+ P 12.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
# g# I+ _" j# [ e) j Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130) o% a* g5 Q8 b Y. k; d; c# M
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134% q7 o. S I3 J' X' f8 i7 `
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
- Y: b8 o( l4 _' Y, b. t4 a) q& V Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
1 V5 T. m1 G4 X* R1 m |
|