EDA365电子工程师网
标题:
True-Hspice Device模型参考手册
[打印本页]
作者:
snowwolfe
时间:
2008-3-25 17:14
标题:
True-Hspice Device模型参考手册
Table of Contents
* W: r8 t! @: C3 T- Y2 Z
Audience ............................................................................................. iii
- ?$ T0 g2 d) K* m$ @
Related Documents ............................................................................. iii
1 ^7 t4 Y& @8 S: X) }
Conventions ........................................................................................ iv
g7 J: v6 n2 o' h: c) p
Obtaining Customer Support .............................................................. vi
8 O) ]# I, O0 z8 h J1 z
Other Sources of Information ............................................................ vii
1 d/ k% t: E5 C& R
Revision History ............................................................................... viii
1 G( O- h: v. B
Chapter 1 - Overview of Models ..................................................................... 1-1
& g) h* N8 V5 } a* I: K# |
Using Models to Define Netlist Elements .............................................. 1-2
) ]& D1 k y" F: x# ?9 N
Supported Models for Specific Simulators ....................................... 1-2
1 f6 ^1 J3 B: J- M) W- u; z
Selecting Models .............................................................................. 1-3
% F, _5 T$ H6 w1 t0 m* @
Example ............................................................................................ 1-3
0 ?6 C+ X1 A- r/ w" k9 ]
Chapter 2 - Using Passive Device Models....................................................... 2-1
: ~; T* L" X5 @ g4 U( f0 z$ \9 e
Resistor Device Model and Equations .................................................... 2-2
9 |) R9 z y$ z, b" h: J
Wire RC Model ................................................................................. 2-2
8 F: N0 g6 M8 g. j
Resistor Model Equations ................................................................. 2-5
8 l3 `& ` z, ^% j3 M5 j
Capacitor Device Model and Equations ............................................... 2-10
+ F% V4 ]. \/ z( j
Capacitance Model ......................................................................... 2-10
* H W: u" e/ }' S6 {# W
Capacitor Device Equations ........................................................... 2-11
! ~3 b2 _, d# y9 b6 U2 W
Inductor Device Model and Equations ................................................. 2-14
: D, e b2 ~ L2 k8 \
Inductor Core Models ..................................................................... 2-15
: o" T& l5 T y( t8 s6 `4 R: t
Magnetic Core Element Outputs .................................................... 2-18
0 ]' x& U8 ~; h; z& K
Inductor Device Equations ............................................................. 2-19
1 \9 s8 A; u$ d# v R8 v' B v
Jiles-Atherton Ferromagnetic Core Model ..................................... 2-21
& C7 o( j& D3 w8 C3 B' a2 |. }
Power Sources ....................................................................................... 2-30
$ w' }& o7 z. d; L" {5 T5 q
Independent Sources ....................................................................... 2-30
8 p; | F* L9 r+ t" d# ~0 z( w6 s$ J
Controlled Sources .......................................................................... 2-33
; g5 I/ l4 n( S1 E
Chapter 3 - Using Diodes ................................................................................. 3-1
5 Y4 S: w5 ~" K6 _$ k$ V9 A0 e
Diode Types ............................................................................................ 3-2
7 S0 X) f J4 H: z. C( B
Using Diode Model Statements .............................................................. 3-3
5 \# H! k' I: V0 S9 B
Setting Control Options .................................................................... 3-3
5 O1 V' V& A$ ]+ @) Q, `
Specifying Junction Diode Models ......................................................... 3-5
- G- X, s. Y& y* i, F
Using the Junction Model Statement ................................................ 3-6
2 z+ V- m1 H8 E8 c
Using Junction Model Parameters .................................................... 3-7
) g1 Z0 y w1 i5 p3 a+ Y2 j
Geometric Scaling for Diode Models ............................................. 3-13
$ M, B6 o3 i5 e9 T& i5 w, U
Defining Diode Models ................................................................... 3-15
, K0 f5 y( D; Y6 I
Determining Temperature Effects on Junction Diodes ................... 3-18
- ]4 \3 l* v' j) V4 I" w
Using Junction Diode Equations ........................................................... 3-21
- A0 o. G$ O' \/ ^3 P3 `5 T/ \
Using Junction DC Equations ......................................................... 3-22
# v m* L# }" z! j
Using Diode Capacitance Equations ............................................... 3-25
/ x. m, P* m$ a# Q' D" n
Using Noise Equations .................................................................... 3-27
$ ? q+ ?3 E/ B, l! {9 g
Temperature Compensation Equations ........................................... 3-28
, ?- ]" \ z, p- h/ W' {
Using the Junction Cap Model .............................................................. 3-32
; V2 Q, U8 f! ]& c7 R1 ?
Setting Juncap Model Parameters ................................................... 3-33
/ q9 H: D1 T/ B# O; J; ~$ y
Theory ............................................................................................. 3-33
. R( z: s2 G& M+ f! \7 x
JUNCAP Model Equations ............................................................. 3-38
2 {9 X- L! _5 n/ h9 j' O2 A
Using the Fowler-Nordheim Diode ...................................................... 3-46
+ r# W% ~$ v1 k# q0 D" o
Converting National Semiconductor Models ........................................ 3-48
2 S! z5 v7 k9 o/ i% ^! g: A* c' |
Chapter 4 - Using BJT Models ........................................................................ 4-1
7 e7 h$ t0 C+ E& p6 s
Using BJT Models .................................................................................. 4-2
) E7 u% K& t0 V$ Q& C
Selecting Models ............................................................................... 4-2
3 ?$ a1 j0 r# `! b& ^# p
BJT Model Statement ............................................................................. 4-4
' ~+ Q3 j% p$ M
Using BJT Basic Model Parameters ................................................. 4-5
6 |5 Q% O* M, g( m
Handling BJT Model Temperature Effects ..................................... 4-15
7 \, j; V* ^( ^6 P' I, O/ o
BJT Device Equivalent Circuits ............................................................ 4-21
6 E$ J7 s6 a+ D6 q
Scaling ............................................................................................. 4-21
L, D6 |( D% j4 A% C
Understanding the BJT Current Convention ................................... 4-21
8 U# H* h+ w8 k( \% k
Using BJT Equivalent Circuits ....................................................... 4-22
( U \3 C0 [ m" h5 v' X& l% D' n* J; u0 C
BJT Model Equations (NPN and PNP) ................................................. 4-30
7 W( D2 U# ?3 z9 Q% w; P' m
Understanding Transistor Geometry in Substrate Diodes .............. 4-30
% e7 p1 ~) ]$ e8 E, a
Using DC Model Equations ............................................................ 4-32
^9 ?: Q7 I+ n* ^; Y( t7 q) B
Using Substrate Current Equations ................................................. 4-33
! P5 c+ Q& ]* V9 O) |* Z9 ]
Using Base Charge Equations ......................................................... 4-34
$ o# _5 z" r3 t0 B3 P4 R% Q
Using Variable Base Resistance Equations .................................... 4-35
0 `3 t9 O4 C# {: N& }" Q! ^* O
Using BJT Capacitance Equations ........................................................ 4-36
8 q9 @+ C0 h' s9 J5 b
Using Base-Emitter Capacitance Equations ................................... 4-36
9 H2 j% _4 A( [4 B* v& E
Determining Base Collector Capacitance ....................................... 4-38
( }3 H: L2 s7 ]. P
Using Substrate Capacitance ........................................................... 4-40
! Y& Q; Y# g9 N6 u4 i
Defining BJT Noise Equations ............................................................. 4-42
* V/ X/ B5 H5 N6 x
BJT Temperature Compensation Equations ......................................... 4-44
9 }7 z0 G# L! N" P
Using Energy Gap Temperature Equations .................................... 4-44
" ^' g, W4 e/ D# [/ d* W$ _
Saturation and Beta Temperature Equations, TLEV=0 or 2 ........... 4-44
/ F6 F$ C- e3 V. ?
Using Saturation and Temperature Equations, TLEV=1 ................ 4-46
" R( |: ^7 {& Z, J# r" n/ L
Using Saturation Temperature Equations, TLEV=3 ....................... 4-47
9 M2 J3 k: `& ~9 ~! g
Using Capacitance Temperature Equations .................................... 4-49
5 g# q+ e! r* m" K0 W8 }
Parasitic Resistor Temperature Equations ...................................... 4-51
+ G V/ Q& z& w' b8 N/ m4 M! ~, Y2 n
Using BJT Level=2 Temperature Equations .................................. 4-52
$ e Z0 n2 o# E) I' b8 n
BJT Quasi-Saturation Model ................................................................ 4-53
) `' i4 m% O# l6 }
Using Epitaxial Current Source Iepi ............................................... 4-55
3 j8 x3 g, C2 ?: w
Epitaxial Charge Storage Elements Ci and Cx ............................... 4-55
3 ~6 }3 k6 C* E+ \* V
Converting National Semiconductor Models ........................................ 4-58
2 l7 Z3 M2 ]6 x$ N' h
VBIC Bipolar Transistor Model ........................................................... 4-60
7 H$ T& N3 I4 Z
Understanding the History of VBIC ............................................... 4-60
3 [" T$ }0 ^) h- _
VBIC Parameters ............................................................................ 4-61
, t3 ^$ P" \6 o7 i: R9 b* e
Noise Analysis ................................................................................ 4-62
& ^: E, Z0 d; B( C
Level 6 Philips Bipolar Model (MEXTRAM Level 503) ..................... 4-71
0 ?0 H; \* ^, m5 s* b
Level 6 Element Syntax .................................................................. 4-71
: v4 Y: T) r/ a; \
Level 6 Model Parameters .............................................................. 4-72
* F- V5 d5 p4 B& }2 N1 E [0 R
Level 6 Philips Bipolar Model (MEXTRAM Level 504) ..................... 4-78
3 N. y- _+ E% y
Notes ............................................................................................... 4-79
) O1 i' L) q! l; ~7 k
Level 6 Model Parameters (504) ..................................................... 4-80
0 i; ~5 r5 } K, r2 d# D& _
Level 8 HiCUM Model ......................................................................... 4-94
* m" Z3 o: h2 C' X$ C/ _
What is the HiCUM Model? ........................................................... 4-94
# E5 J7 M6 l' Q+ E- D! I/ l
HiCUM Model Advantages ............................................................ 4-94
/ `. H% B& C& a2 ?; g: v
Avant! HiCUM Model vs. Public HiCUM Model .......................... 4-96
* _9 w" |1 P; T# Y; ~2 D
Model Implementation .................................................................... 4-96
5 m+ I2 K |, u1 Q9 E
Internal Transistors ......................................................................... 4-97
z$ I$ h' w1 z* s
Level 9 VBIC99 Model ...................................................................... 4-110
v) s& C" q& h: i! `) }! Z
Element Syntax of BJT Level 9 .................................................... 4-110
+ \) Q5 K4 a9 ^: e7 T
Effects of VBIC99 ........................................................................ 4-112
$ G0 J3 F4 @: U, ^& D+ A
Model Implementation .................................................................. 4-112
# ~# }5 B) ]0 M" X9 |( G
Example ........................................................................................ 4-119
; @) L: G. t- l8 b+ B
VBIC99 Notes for HSPICE Users ................................................ 4-123
8 W+ T, h; V+ A% ^: K
Level 10 Phillips MODELLA Bipolar Model .................................... 4-124
% b+ Y) T7 K8 V
Model Parameters ......................................................................... 4-124
% b% w& i' u; a, Q9 [
Equivalent Circuits ........................................................................ 4-129
) p" q4 s8 K) c! _. ]0 Y) C9 E
DC Operating Point Output .......................................................... 4-131
$ N$ {$ X, ]5 S5 ` v7 b* ]
Model Equations ........................................................................... 4-132
% s4 I1 C$ c# ?. I
Temperature Dependence of the Parameters ................................ 4-142
. t1 F2 m! d# k8 J( A
Level 11 UCSD HBT Model .............................................................. 4-146
8 t# K3 S+ K& R% R$ ?% g
Using the UCSD HBT Model ....................................................... 4-146
2 P! X2 y5 \1 Q5 Z- S
Description of Parameters ............................................................. 4-147
; o$ N& K5 ^. ^$ s+ {+ \
Model Equations ........................................................................... 4-152
7 n5 m( V" n9 `
Equivalent Circuit ......................................................................... 4-163
) a6 z+ O! j7 k) A/ A
Example Avant! True-Hspice Model Statement ........................... 4-165
8 g. g( u& N- W+ I9 f E
Chapter 5 - Using JFET and MESFET Models............................................. 5-1
3 [2 X: P8 k: N/ k, V. L9 ?: N4 X
Understanding JFETs .............................................................................. 5-2
+ n+ O" i2 R9 d8 _
Specifying a Model ................................................................................. 5-3
. p. a7 Z, n7 R( R% T
Understanding the Capacitor Model ....................................................... 5-5
- I) m/ S' G+ }/ ^5 `5 T- M* w
Model Applications ........................................................................... 5-5
) `3 r6 C3 k& j: t
Control Options ................................................................................. 5-6
( v8 ]( A) e+ a, }4 A* R1 o. Q1 O
JFET and MESFET Equivalent Circuits ................................................. 5-7
/ J' K( i- b' A
Scaling ............................................................................................... 5-7
$ H" @6 e3 t+ ]; `
Understanding JFET Current Convention ........................................ 5-7
7 p8 {7 n# K/ s- G8 v4 T* Q+ v
JFET Equivalent Circuits .................................................................. 5-8
; x$ r7 H M, Y$ o0 o- c4 I: ~/ \( e6 p
JFET and MESFET Model Statements ................................................. 5-13
) l8 l* }: M! d$ f; w6 E8 o/ L
JFET and MESFET Model Parameters ........................................... 5-13
- U2 _/ Q0 D* m
Gate Diode DC Parameters ............................................................. 5-15
" ~4 W% t- s* W- J
JFET and MESFET Capacitances ................................................... 5-25
$ d& w) I( J" n* {. @% j( G) Q6 O
Capacitance Comparison (CAPOP=1 and CAPOP=2) ................... 5-29
% A6 \" o& ~: P6 m# \5 W
JFET and MESFET DC Equations ................................................. 5-31
' g, U" w( K. X5 x9 K& Z( _
JFET and MESFET Noise Models ....................................................... 5-35
3 G+ P- ?( j- w, T& W
Noise Parameters ........................................................................... 5-35
; ?1 L; A* P, m! F; B. H7 r
Noise Equations .............................................................................. 5-35
8 B# U p+ w6 w, n( ~" J' W$ n
Noise Summary Printout Definitions .............................................. 5-36
0 F/ b% [1 |8 X* L# X2 U
JFET and MESFET Temperature Equations ........................................ 5-37
2 |4 E; z: q- m8 h7 c2 M8 a; _
Temperature Compensation Equations ........................................... 5-40
2 s" I X6 {. H/ D4 |$ h% j X
。。。。。。。。。。。
, B8 O. Z" R4 o3 w
$ N9 ^+ p1 J3 n5 m
0 W* A. \! u- V. o1 n& i
作者:
soda2010
时间:
2008-8-21 22:17
xiexiele
作者:
superfect
时间:
2008-11-6 21:01
好 啊。感谢啊
作者:
winstonguo
时间:
2009-4-18 17:20
感激!
作者:
muzi820305
时间:
2009-12-25 15:03
谢谢,学习中
作者:
kyang74
时间:
2010-1-30 15:13
谢谢~
作者:
pzh2006
时间:
2010-3-5 15:25
好东西
作者:
andy.wei
时间:
2012-6-5 20:36
谢谢分享
作者:
zl0721
时间:
2012-7-6 14:47
kan kan
作者:
Colin_Zhou
时间:
2012-8-8 16:18
thanks a lot ,very good materials
作者:
ssping
时间:
2012-10-14 16:39
先下了,谢谢!努力学习
作者:
shuaiwang
时间:
2015-4-16 22:26
谢谢
作者:
灯火枫桥
时间:
2015-4-18 17:03
谢谢啊!
作者:
狂想的旅程
时间:
2018-1-28 23:03
xiexie lou zhu
作者:
狂想的旅程
时间:
2018-1-28 23:06
好资料
作者:
Justinkunt
时间:
2018-3-16 21:55
支持,頂一個
作者:
claptrap
时间:
2018-3-29 09:43
谢谢~
作者:
helicopter
时间:
2018-4-8 10:59
谢谢分享
欢迎光临 EDA365电子工程师网 (https://bbs.elecnest.cn/)
Powered by Discuz! X3.2