EDA365电子工程师网
标题:
True-Hspice Device模型参考手册
[打印本页]
作者:
snowwolfe
时间:
2008-3-25 17:14
标题:
True-Hspice Device模型参考手册
Table of Contents
- V0 X8 p+ `( l9 v9 G
Audience ............................................................................................. iii
. L5 c2 ?, P$ T7 V: B9 g2 {
Related Documents ............................................................................. iii
) J" u: [0 I/ h. n& z) {
Conventions ........................................................................................ iv
; C/ r$ n9 N' z
Obtaining Customer Support .............................................................. vi
& P! \+ I9 y! H9 H1 _. e
Other Sources of Information ............................................................ vii
7 N* d. i" n; b$ n) }
Revision History ............................................................................... viii
% W# w0 R" G+ K4 E! U7 ~4 s
Chapter 1 - Overview of Models ..................................................................... 1-1
; u; ?5 I# P7 h+ c
Using Models to Define Netlist Elements .............................................. 1-2
) h+ b J% g, ^/ y9 S
Supported Models for Specific Simulators ....................................... 1-2
+ p2 P/ a9 b7 D# y, J/ @0 z# Y
Selecting Models .............................................................................. 1-3
7 ?/ r4 H" Y- r, F3 i+ J
Example ............................................................................................ 1-3
7 W# W' A2 Z" }' t8 K
Chapter 2 - Using Passive Device Models....................................................... 2-1
, C2 R7 h7 u- J# |# ~- }
Resistor Device Model and Equations .................................................... 2-2
4 \( G! n$ x5 I2 s+ {: q2 H& q
Wire RC Model ................................................................................. 2-2
) |$ j) u( C! R$ W: y$ b
Resistor Model Equations ................................................................. 2-5
1 R/ V" }. n' `2 I& o8 L+ u+ v
Capacitor Device Model and Equations ............................................... 2-10
1 I. r9 Q9 Z4 s5 s4 R
Capacitance Model ......................................................................... 2-10
' t# N4 \5 Y/ Y! s
Capacitor Device Equations ........................................................... 2-11
( @8 {" I+ [8 W7 C8 S4 ^
Inductor Device Model and Equations ................................................. 2-14
& k7 ~7 ~" R1 C
Inductor Core Models ..................................................................... 2-15
, C' B* v' Y" j5 q2 z1 {/ h
Magnetic Core Element Outputs .................................................... 2-18
0 x' b3 @7 j5 P3 ?) H
Inductor Device Equations ............................................................. 2-19
9 B$ I5 m8 ^" |* Z6 e
Jiles-Atherton Ferromagnetic Core Model ..................................... 2-21
3 H1 k3 f) a4 q M9 _
Power Sources ....................................................................................... 2-30
q5 e3 u" r% K( F2 Z1 O) Q, H( {
Independent Sources ....................................................................... 2-30
. ~3 D ?' {8 P! @: P
Controlled Sources .......................................................................... 2-33
$ r7 Q' o' L, w; m, {
Chapter 3 - Using Diodes ................................................................................. 3-1
6 y' o. U8 e) o+ G! M
Diode Types ............................................................................................ 3-2
2 @) I+ H' |* x/ r% J
Using Diode Model Statements .............................................................. 3-3
# S+ h" w8 C, g: l7 l9 H1 z
Setting Control Options .................................................................... 3-3
. }- Z9 F4 b& F6 x% T, X9 F
Specifying Junction Diode Models ......................................................... 3-5
2 {* C1 o4 _! P5 f! d
Using the Junction Model Statement ................................................ 3-6
) M' K) @4 e! o: k$ X* X6 t, p
Using Junction Model Parameters .................................................... 3-7
- i! E/ B m) C& {7 t8 I5 S
Geometric Scaling for Diode Models ............................................. 3-13
9 k: `, k# P& Q( |) x/ s
Defining Diode Models ................................................................... 3-15
# S O, X6 z5 s9 r d* \( }8 S5 A! o- g
Determining Temperature Effects on Junction Diodes ................... 3-18
) [/ g) }( D$ ?4 U R
Using Junction Diode Equations ........................................................... 3-21
6 Z/ d. r, z M0 L
Using Junction DC Equations ......................................................... 3-22
5 Z2 K! G8 j9 l) }8 d) t' ]
Using Diode Capacitance Equations ............................................... 3-25
* \" e# x+ G. \" Y
Using Noise Equations .................................................................... 3-27
7 n. w' r8 y9 E0 h; V, @, Y9 n
Temperature Compensation Equations ........................................... 3-28
0 c% o0 h! J: e3 B8 ?0 S
Using the Junction Cap Model .............................................................. 3-32
& Y4 `" k. U2 Q0 R: U% v3 g
Setting Juncap Model Parameters ................................................... 3-33
1 M6 F1 d; G; a8 V P
Theory ............................................................................................. 3-33
! b) z U2 ^! R8 v, ]# Z5 z% _
JUNCAP Model Equations ............................................................. 3-38
0 T( K1 m; h2 U
Using the Fowler-Nordheim Diode ...................................................... 3-46
( j# F* u' F9 v4 g1 z
Converting National Semiconductor Models ........................................ 3-48
$ Y( n( N; a/ n0 H( R" ?+ y+ A
Chapter 4 - Using BJT Models ........................................................................ 4-1
& `7 D; o- q' K: U( n; }
Using BJT Models .................................................................................. 4-2
; n1 f0 r$ D4 a
Selecting Models ............................................................................... 4-2
* `/ v) | _- c- e4 |' F
BJT Model Statement ............................................................................. 4-4
% ]6 {6 F% y9 g* {( J. l
Using BJT Basic Model Parameters ................................................. 4-5
5 B' W# V4 q v
Handling BJT Model Temperature Effects ..................................... 4-15
# L% S' ~! x- k6 q+ ^
BJT Device Equivalent Circuits ............................................................ 4-21
, A% _3 D; A! I* z: f
Scaling ............................................................................................. 4-21
8 k; Y, b1 H3 ~
Understanding the BJT Current Convention ................................... 4-21
# k7 T6 G! y! I2 v3 j q: E; Y
Using BJT Equivalent Circuits ....................................................... 4-22
/ C8 l. }/ U- M
BJT Model Equations (NPN and PNP) ................................................. 4-30
( U$ j0 o6 q( G2 c; @3 u
Understanding Transistor Geometry in Substrate Diodes .............. 4-30
9 F6 ?3 b. k7 {, c, ]) |+ \7 |! L2 z9 n0 S
Using DC Model Equations ............................................................ 4-32
' f9 r |: Z( M0 K& S. i
Using Substrate Current Equations ................................................. 4-33
' l9 H4 }. C) Z" U
Using Base Charge Equations ......................................................... 4-34
2 g, \, Z; ~6 P
Using Variable Base Resistance Equations .................................... 4-35
3 f% c3 N6 h8 |" \, G
Using BJT Capacitance Equations ........................................................ 4-36
% r8 P1 p- ?+ l9 q! j4 ?$ b- ^% z
Using Base-Emitter Capacitance Equations ................................... 4-36
/ w( U, t; [/ ?4 \) [$ c+ o- R
Determining Base Collector Capacitance ....................................... 4-38
' M5 z: {. m/ B4 [' L) c/ l
Using Substrate Capacitance ........................................................... 4-40
- i' P( h' ]! I4 q7 f
Defining BJT Noise Equations ............................................................. 4-42
% Q; `: Q4 z0 [$ B% v
BJT Temperature Compensation Equations ......................................... 4-44
3 J+ t9 g0 k( l
Using Energy Gap Temperature Equations .................................... 4-44
0 S* F# D" D# I
Saturation and Beta Temperature Equations, TLEV=0 or 2 ........... 4-44
; A) ?- n: i w$ ?" c1 n2 y! j7 l
Using Saturation and Temperature Equations, TLEV=1 ................ 4-46
) D+ O( x* A$ b1 ?% H- N! B6 S* I# ~
Using Saturation Temperature Equations, TLEV=3 ....................... 4-47
- F! {! Q' O* I/ D) y
Using Capacitance Temperature Equations .................................... 4-49
- {3 c5 i; m5 c$ U8 {
Parasitic Resistor Temperature Equations ...................................... 4-51
' y* e5 c, z3 R7 f8 j* Y$ c
Using BJT Level=2 Temperature Equations .................................. 4-52
. y- p/ @2 ^2 L1 P. }
BJT Quasi-Saturation Model ................................................................ 4-53
' ]% B F! p& S( V& @7 ^
Using Epitaxial Current Source Iepi ............................................... 4-55
. z1 O& C: Q, {% k6 ]8 }. P* w
Epitaxial Charge Storage Elements Ci and Cx ............................... 4-55
! j- {& u0 a6 c$ `7 q/ s: B
Converting National Semiconductor Models ........................................ 4-58
9 z# Z3 s) `4 p' O" `0 l: b' }
VBIC Bipolar Transistor Model ........................................................... 4-60
; [4 T6 i- P6 F1 i* S9 y7 B
Understanding the History of VBIC ............................................... 4-60
+ Y) R, b( K l% P- U2 [4 V6 H
VBIC Parameters ............................................................................ 4-61
# x3 q5 ~+ q2 k) Z
Noise Analysis ................................................................................ 4-62
' g5 x! Q! d; E- J
Level 6 Philips Bipolar Model (MEXTRAM Level 503) ..................... 4-71
; Q: J9 q$ r9 ^# F) f. |
Level 6 Element Syntax .................................................................. 4-71
8 g5 F7 ?; Z z1 `3 U7 x
Level 6 Model Parameters .............................................................. 4-72
' H* x! ^) J U& i- C# E) j7 K* l
Level 6 Philips Bipolar Model (MEXTRAM Level 504) ..................... 4-78
% ^% p+ N- ~ G! G$ ]+ x) R: s
Notes ............................................................................................... 4-79
3 o9 G& @. T) e" v' M& ~8 m
Level 6 Model Parameters (504) ..................................................... 4-80
; T6 g! T1 U! x0 z% K
Level 8 HiCUM Model ......................................................................... 4-94
3 j8 A; ^. k# @8 F4 d0 j5 B. B+ V
What is the HiCUM Model? ........................................................... 4-94
% o, [: q! W k: a) ]# b% Y( X+ n
HiCUM Model Advantages ............................................................ 4-94
9 k3 z" I% d- k1 y
Avant! HiCUM Model vs. Public HiCUM Model .......................... 4-96
- ~, x% [% C, K# v
Model Implementation .................................................................... 4-96
' ^0 |! E- Y* Q ^, y
Internal Transistors ......................................................................... 4-97
- M( e2 c) z# A: f2 s( Y+ f4 n
Level 9 VBIC99 Model ...................................................................... 4-110
, D$ `7 l. q, ~6 c
Element Syntax of BJT Level 9 .................................................... 4-110
5 Y. C+ [: }) M) h
Effects of VBIC99 ........................................................................ 4-112
/ v6 O4 M6 Z/ [, \; T
Model Implementation .................................................................. 4-112
( v' X8 i" X4 Q7 a4 D& p) k0 Q
Example ........................................................................................ 4-119
3 m$ U1 B( G0 M" v
VBIC99 Notes for HSPICE Users ................................................ 4-123
7 P8 A% m! ~' |! `3 }/ W0 |
Level 10 Phillips MODELLA Bipolar Model .................................... 4-124
# c' ^' X* E9 @; r
Model Parameters ......................................................................... 4-124
7 M; d: J4 q1 F. M" I7 {
Equivalent Circuits ........................................................................ 4-129
$ n) d4 G0 E' ?' a: f0 Q
DC Operating Point Output .......................................................... 4-131
0 C# n7 z) m. f2 K$ ~7 H
Model Equations ........................................................................... 4-132
$ F# p& z4 | N4 [; L
Temperature Dependence of the Parameters ................................ 4-142
+ `1 ^0 ^. Y, B+ S8 N5 A
Level 11 UCSD HBT Model .............................................................. 4-146
- x3 @" {. P8 D) k* j& C( a3 F
Using the UCSD HBT Model ....................................................... 4-146
V+ C4 i7 s5 i6 i8 |# N; x
Description of Parameters ............................................................. 4-147
" E, D; `$ k9 d0 t1 R3 _
Model Equations ........................................................................... 4-152
: _# x; A( J. X8 @7 R4 @& j/ {/ D
Equivalent Circuit ......................................................................... 4-163
' H( X( ?* u3 i0 B. m! ?' x1 X
Example Avant! True-Hspice Model Statement ........................... 4-165
& ?2 ~$ C9 h% I/ H3 N
Chapter 5 - Using JFET and MESFET Models............................................. 5-1
: o% g* K7 p6 R9 q
Understanding JFETs .............................................................................. 5-2
+ b$ r4 K" N$ Y/ h( ]7 P3 s
Specifying a Model ................................................................................. 5-3
7 I8 n9 X9 Z2 p4 |6 R7 C
Understanding the Capacitor Model ....................................................... 5-5
. t9 b5 @6 B6 i$ H
Model Applications ........................................................................... 5-5
. s: x+ B% X" o
Control Options ................................................................................. 5-6
% t, n7 _6 B2 l8 q( e5 M2 R* l
JFET and MESFET Equivalent Circuits ................................................. 5-7
1 n5 v& J( ^+ y; |8 k; ?
Scaling ............................................................................................... 5-7
, E1 l2 ~' p) M5 d4 B9 u$ q+ ~
Understanding JFET Current Convention ........................................ 5-7
5 {* N& ^! S8 e, ?1 Q
JFET Equivalent Circuits .................................................................. 5-8
% X( e/ ~! k% j
JFET and MESFET Model Statements ................................................. 5-13
8 Q' ^* R- N* m3 r
JFET and MESFET Model Parameters ........................................... 5-13
5 k7 F4 n ?7 o4 k4 ?5 R
Gate Diode DC Parameters ............................................................. 5-15
3 \3 ?; N. ?7 R* z( {* r
JFET and MESFET Capacitances ................................................... 5-25
* q7 |2 ^2 v; |
Capacitance Comparison (CAPOP=1 and CAPOP=2) ................... 5-29
8 V e! n2 Y; [/ k# m1 |# L% b
JFET and MESFET DC Equations ................................................. 5-31
4 C |6 K* R) [3 l5 I+ F
JFET and MESFET Noise Models ....................................................... 5-35
5 f2 y4 l% l; p% }9 _
Noise Parameters ........................................................................... 5-35
8 M+ K' g* p: `
Noise Equations .............................................................................. 5-35
* l" f+ _, ~- X* _
Noise Summary Printout Definitions .............................................. 5-36
9 T, j! U4 K/ S9 q
JFET and MESFET Temperature Equations ........................................ 5-37
/ ]. `% `3 b/ v/ S
Temperature Compensation Equations ........................................... 5-40
/ ]# g6 V, A" n r6 f
。。。。。。。。。。。
2 o" C& @1 x# u9 A
! ?8 t. N: u' T$ f$ I6 T
6 I! s Z+ m0 ?0 ^! h
作者:
soda2010
时间:
2008-8-21 22:17
xiexiele
作者:
superfect
时间:
2008-11-6 21:01
好 啊。感谢啊
作者:
winstonguo
时间:
2009-4-18 17:20
感激!
作者:
muzi820305
时间:
2009-12-25 15:03
谢谢,学习中
作者:
kyang74
时间:
2010-1-30 15:13
谢谢~
作者:
pzh2006
时间:
2010-3-5 15:25
好东西
作者:
andy.wei
时间:
2012-6-5 20:36
谢谢分享
作者:
zl0721
时间:
2012-7-6 14:47
kan kan
作者:
Colin_Zhou
时间:
2012-8-8 16:18
thanks a lot ,very good materials
作者:
ssping
时间:
2012-10-14 16:39
先下了,谢谢!努力学习
作者:
shuaiwang
时间:
2015-4-16 22:26
谢谢
作者:
灯火枫桥
时间:
2015-4-18 17:03
谢谢啊!
作者:
狂想的旅程
时间:
2018-1-28 23:03
xiexie lou zhu
作者:
狂想的旅程
时间:
2018-1-28 23:06
好资料
作者:
Justinkunt
时间:
2018-3-16 21:55
支持,頂一個
作者:
claptrap
时间:
2018-3-29 09:43
谢谢~
作者:
helicopter
时间:
2018-4-8 10:59
谢谢分享
欢迎光临 EDA365电子工程师网 (https://bbs.elecnest.cn/)
Powered by Discuz! X3.2