SiP(System in Package)系统级封装技术正成为当前电子技术发展的热点,受到了来自多方面的关注,这些关注既来源于传统封装Package设计者,也来源于传统的MCM设计者,更多来源于传统的PCB设计者,甚至SoC的设计者也开始关注SiP。
和Package比较而言,SiP是系统级的多芯片封装,能够完成独立的系统功能。
和MCM比较而言,SiP是3D立体化的多芯片封装,其3D主要体现在芯片堆叠和基板腔体上,同时,SiP的规模和所能完成的功能也比MCM有较大提升。
和PCB比较而言,SiP技术的优势主要体现在小型化、低功耗、高性能方面。实现和PCB同样的功能,SiP只需要PCB面积的10-20%左右,功耗的40%左右,性能也会有比较大的提升。
和SoC比较而言,SiP技术的优势主要体现在周期短、成本低、易成功方面。实现同样的功能,SiP只需要SoC研发时间的10-20%,成本的10-15%左右,并且更容易取得成功。因此,SiP被很多行业用户作为SOC建设的低成本、短期替代方案,SOC项目开始时以SiP作为先行者,迅速且低成本地做出SiP产品,当SiP在项目上取得一定的阶段性成果之后,收到多方认可和支持,再将重心转到SOC研发上。
对于航天应用中的抗辐照设计,国内外已经开始考虑在SiP封装外壳材料上进行抗辐照加固处理,这样比在板级加固效果要更好,而且重量更轻,更利于航天应用。
SiP和PCB相比,由于面积更小,互联线更短,所以其高频特性更好。同时,由于互联线短,消耗在传输线的能量更少,从而也在一定程度上节省了功耗,实现了降低功耗的作用,在高速电路设计中这种效果尤其明显。
SiP是IC产业链中知识、技术和方法相互交融渗透及综合应用的结晶,它最大限度地灵活应用各种不同芯片资源和封装互连优势。
SiP系统级封装集成能最大程度上优化系统性能,避免重复封装,缩短开发周期、降低成本并提高集成度,掌握这项新技术是进入主流封装领域之关键。
在国际上,SiP技术被广泛应用于航空航天、军工、无线通信、传感器、计算机和网络等方面。
目前全世界封装产值只占IC总产值的10%左右,当SiP技术被封装企业掌握后,产业格局就要开始调整,封装行业将会出现一个跳跃式的发展,这是中国发展具有IP核的大好时机。毋须置疑,SiP技术不仅面临着更大的机遇和挑战,而且也孕育着更为广阔的发展空间。
SiP技术是近些年来国内外研究的重点,是电子系统小型化的重要手段,SiP可以通过传统的微组装技术来实现3D系统级封装,表现为芯片堆叠、封装堆叠及基板堆叠等方式来实现,另一种方式是通过硅通孔技术(TSV)实现系统级封装。
在国内,越来越多的电子设计工程师开始关注和学习SiP的技术,但由于目前关于SiP设计和仿真方面的综合书籍很缺乏,设计者往往无从下手,这在一定程度上也阻碍了SiP技术在国内的快速发展。
Mentor Expedition是一款专业的SiP设计工具,包括原理图设计、版图布线设计、电学分析及热分析等模块,可以实现芯片堆叠、基板堆叠、复杂腔体结构设计,是一款真正意义上的3D设计工具。
" Q. [( @- v" G* L5 Q
《SiP系统级封装设计与仿真》重点基于Mentor ExpeditionEnterprise Flow设计平台,介绍了SiP设计与仿真的全流程。特别对键合线(Wire Bonding)、芯片堆叠(Die Stacks)、腔体(Cavity)、倒装焊(Flip Chip)及重分布层(RDL)、埋入式无源元件(Embedded Passive Component)、参数化射频电路(RF)、多版图项目管理、多人实时协同设计(Xtreme)、3D实时DRC等最新的SiP设计技术及方法做了详细的阐述。在本书的最后一章介绍了SiP仿真技术,并通过实例阐述了SiP的仿真方法。
- X: [9 F* |; C s! L+ a2 N" s
本书适合SiP设计用户、封装及MCM设计用户,PCB设计的高级用户,所有对SiP技术感兴趣的设计者和课题领导者,以及寻求系统小型化、低功耗、高性能解决方案的科研工作者。
7 J$ t8 c" p. u+ E7 R
开这个帖子的目的其实主要为了和大家互动,是否要买这本书主要看实际设计中是否真的需要用到上面的技术了。
欢迎交流,欢迎讨论!
) _5 |/ T, b B: p( V9 g+ O
. F( x6 ^, F$ Z