EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 pjh02032121 于 2015-2-26 23:10 编辑 * G7 E# S- ~% s2 H, f
* r8 T- o; X4 N/ X, V# b
2015年02月24日 | Chong-Sheng Wang、Danny Clavette和Tony Ochoa# \1 t/ k" g4 U9 d9 l0 l, B
4 z* g* P# Q( ~+ a電子系統的熱管理對很多電子應用越來越重要,包括電腦、電信設備與半導體元件,以及航太、汽車和消費電子。電子系統熱模擬需要電子封裝的簡化熱模型(Compact Thermal Models; CTM)。CTM不會透露封裝的IP資訊,是電子封裝製造商進行熱評估的首選。另一方面,CTM的元件比詳細熱模型(Detailed Thermal Model; DTM)少,因此需較少的運算時間執行熱模擬。
/ B0 n2 }5 i* r; n' u) s# `& _2 U
1989年,透過擴展結到外殼熱阻測試方法,創造了從電子封裝結到各個不同外表面的熱阻網路[參考文獻1]。1995年,DELPHI聯盟發表第一篇關於邊界條件獨立模型的論文[參考文獻2]。之後,大量與該主題有關的論文相繼發表。JEDEC還發佈了DELPHI簡化熱模型指南[參考文獻3]和雙電阻簡化熱模型指南[參考文獻4]。但是包括這兩個JEDEC標準在內,很多與該主題有關的早期出版物都只針對單晶片封裝。
6 o5 N+ y6 e& [8 z, pIR SupIRBuck穩壓器的CTM可以準確提供三晶片封裝溫度預測。這些CTM是邊界條件各自獨立。意味著,在邊界條件改變時(例如有、無散熱器或者封裝下的PCB佈局不同),CTM能夠預測結溫上升,與DTM的差異在5%或更低。 9 u( t! S4 k7 q# Y! \0 ~% e+ V
這些CTM同時也不受封裝內功率損耗分佈的影響。典型的SupIRBuck穩壓器打線接合如圖1所示,其中Q1為高端FET,Q2為低端FET,IC為控制IC。依應用不同,這三個晶片之間的功率損耗分佈也不同。例如,開關頻率較高時,Q1增加的功率損耗比Q2多。輸入與輸出電壓和電流不同,對Q1與Q2的功率損耗的影響也不同。我們用功率損耗比Q1/Q2和總功率損耗Q1+Q2來表示Q1與Q2之間不同的功率損耗分佈。依應用不同,IC的功率損耗變化相對較小。對於不同的功率損耗分佈,SupIRBuck穩壓器的CTM還比DTM更能準確預測晶片溫度。 " J: j) C' N* H8 Z3 E
![]()
, L$ d, B$ B' P6 V' n% j圖1:SupIRBuck穩壓器的典型打線接合示意圖。
8 s: X+ C8 W \4 |2 W簡化熱模型構造' A" A: Z! L/ w0 I# _& M0 j! j
簡化熱模型由三部分組成:導線架 (Lead-frame)、頂模 (Top Mold)和二者之間的模型核心 (Mold Core),如圖2所示。導線架為金屬件且部分採用普通模型材料;頂模由普通模型材料製成。
6 \6 [! `4 f8 h/ U" y9 i6 Q: l7 d, r c& M
+ F1 ?9 S) b+ J8 F5 i# v3 {1 N! y/ X
圖2a:SupIRBuck穩壓器的簡化熱模型。
; q! ~8 e& `! Q$ V8 O5 ]$ {
0 D/ y p( i7 D& p % H- H- u1 O8 j% O% F2 n1 l
圖2b:簡化熱模型的側視圖。
7 r3 [7 b8 n, N模型核心實際上是一個熱阻網路,連接三個虛擬結點、頂模和導線架,如圖3所示。在各個封裝的熱分析基礎上,利用ANSYS Icepak普通網路工程創建熱阻網路。這三個結點代表封裝內的三個晶片。 * V: v& H8 C7 Y: ]
2 W- N+ l: w) y. ]! ]8 i+ N![]()
! v/ |- M9 f; Q4 K8 K% Z7 q8 {, [圖3:簡化熱模型的模型核心。 結果與對比
H( M' N$ Z. Y: p# o& k利用ANSYS Icepak取得CFD(計算流體動力學)範例模型之模擬結果見下表,以CTM和DTM封裝的對比形式呈現。模擬方式利用封裝模型安裝在詳細PCB熱模型上完成。模擬結果與實際測試資料相符,從而驗證對比所用的DTM封裝有效。
L: A2 W9 U9 d+ ^# N* W正常邊界條件對比:第一組是在應用的正常條件下利用評估板對比有和無散熱器時Q1與Q2之間不同的功率損耗分佈。表1中,Q1+Q2和IC的功率損耗分別為2.6 W和0.32 W,入口處的氣流速度為200 LFM,環境溫度為25°C,Q1/Q2是Q1和Q2的功率損耗比。鋁製散熱器尺寸為寬W x長 L x高 H = 13mm x 23mm x 16mm。三個晶片中的最高溫度被視為封裝的結溫,在表中以紅色數值表示。藍色數值表示給定模擬下較低的元件溫度。
2 x0 c& @0 Q# E1 b: C$ a8 h$ \三個晶片的CTM和DTM預測吻合程度良好,最大結溫上升差異僅0.8%,其他晶片的溫度上升差異則在2%以內。當功率損耗比Q1/Q2從1.6變為0.625時,CTM溫度預測準確度幾乎保持不變。有無散熱器,CTM的預測準確度也幾乎保持不變。 ( R: Y: b# C) @( W8 S
極端邊界條件對比:第二組對比針對封裝下焊料的部份極端條件。除了正常的焊料體積外,圖4也介紹兩種極端情況:一個是Q1下方的焊料有孔洞,另一個是Q2下方的焊料有孔洞。焊料孔洞在大批量生產過程中可能會出現,然而這些極端的孔洞條件只在生產過程有問題時發生。孔洞造成很難將熱量從上述晶片上傳遞至PCB。 7 J0 E4 E, y3 |
![]()
~7 F n, ~8 `5 {圖4:封裝下的焊盤孔洞。
0 P- o: d3 _4 H
表2呈現有和無散熱器時這兩種焊料孔洞情況下的CFD模擬對比結果。這四種情況對比中Q1/Q2=0.625。
2 G/ [: R3 O* b8 R, y. H: R# Q. n1 y" T W4 V! t9 ]
上述極端焊料孔洞實例對比中,CTM和DTM的吻合程度良好,最大結溫上升差異為3.2%,其它晶片溫度上升差異在1.4%以內。
9 L$ L, i R2 U$ S圖5顯示出DTM和CTM的PCB溫度分佈幾乎完全相同。這也顯示,在熱模擬方面,CTM能夠替代DTM。 0 `, W: P& S6 L& \" A
![]()
; Y$ s2 E7 E# K6 w- {' g- R0 p+ H圖5:實例3中DTM(左)和CTM(右)的PCB溫度。
* s/ B, Y: r1 ?, r' h/ L. f討論, c4 p: i9 n4 v4 V$ c# E
1)不同的封裝下PCB佈局:表2的第二組對比可視為極端PCB佈局情況的對比,其中Q1或Q2因佈局設計欠佳造成封裝下散熱不良。因此,該對比也顯示出CTM不受不同PCB佈局的影響。
/ x4 {0 j5 R% y& i4 S- O$ {2)模型驗證和誤差估計:結果顯示CTM不受邊界條件的影響,也不受Q1和Q2之間功率損耗分佈的約制。因此,該模型對比所採用的實際情況足以在實際應用中進行模型驗證。同時,該對比還可作為誤差估計參考。
( g% j+ e) I( x- y: v$ w; `. s3)進一步簡化:在初始模擬條件下,與DTM相比,SupIRBuck穩壓器的CTM將元件數量減少了一半以上。對於終端使用者的系統模擬而言,可以透過雙電阻CTM來實現進一步簡化。PCB佈局完成時,封裝下分佈的熱阻將會固定,可透過將其結果與SupIRBuck穩壓器的CTM相匹配,來生成一個專門針對該PCB和固定晶片功率損耗分佈且精準的雙電阻CTM。 / C, N3 J3 T( y j
結論SupIRBuck穩壓器的CTM具有很高的邊界條件獨立性和晶片功率損耗分佈獨立性。可在單次模擬中準確預測三個晶片的溫度。 SupIRBuck穩壓器的CTM和DTM對比採用一組實際邊界條件,可用於模型驗證和誤差估計參考,實現良好的吻合程度。正常邊界條件下最大結溫上升差異為0.8%,而極端邊界條件下為3.2%。 在初始CFD模擬中,與詳細熱模型相比,SupIRBuck穩壓器的CTM將元件數量減少了50%以上。終端使用者可有效運用生成雙電阻CTM,進一步簡化系統模擬。
& `% k, h6 S: G6 P致謝
' ~0 T8 h! e4 P4 R( k4 {0 N作者非常感謝ANSYS工程師的技術評析與回饋、IR的Ramesh Balasubramaniam提供的評析與回饋及IR的Wenkang Huang在文獻搜集方面給予的莫大幫助。 , x& |; Z3 ]! X, p$ r$ e
2 o0 K$ f. k2 U8 g' n7 k, z
參考文獻
0 G7 f! p' h" F2 B[1] A. Bar-Cohen, T. Elperin, and R. Eliasi, “Theta_jc characterization of chip packages-justification, limitations, and future,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 12, no. 4, pp. 724–731, Dec. 1989. [2] Lasance C., Vinke H., Rosten H., Weiner K.-L., “A Novel Approach for the Thermal Characteri-zation of Electronic Parts,” Proc. of SEMITHERM XI, San Jose, CA, pp. 1-9 (1995) [3] JEDEC Standard “DELPHI Compact Thermal Model Guideline,” JESD15-4, October 2008 [4] JEDEC Standard “Two-Resistor Compact Thermal Model Guideline,” JESD15-3, October 2008
0 m5 l- {- r( k5 A! v4 N; J; t: P註:ANSYS和Icepak是ANSYS公司的注冊商標。 - See more at: http://www.edntaiwan.com/ART_880 ... thash.XVSV3tR3.dpuf
4 S/ \8 y' R: U |