|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction. ]4 o5 s% b* R- y/ t
1.1 Photonics: the countless possibilities of light propagation
0 [1 e1 n; x1 S; m! T' A: l5 W8 ~1.2 Modelling photonics; r- a( S' x& V1 j7 f* ~ I
2 Full-vectorial Beam Propagation Method
& j3 s0 G/ G# I& @2.1 Introduction
8 f8 o& T$ L1 p3 K" K6 b& N' a4 g2.2 Overview of the beam propagation methods, V7 Y* v+ }6 V( `6 `8 C
2.3 Maxwell’s Equations
" P* s& q" @& q# J, ?$ F2.4 Magnetic field formulation of the wave equation' e6 ^$ q. }0 f- \1 P
2.5 Electric field formulation of the wave equation- g( ]: L2 _& |2 a7 U
2.6 Perfectly-Matched Layer
% Q9 b! S, f+ H0 t. P1 t2.7 Finite Element Analysis, V3 T1 B, z, q6 a
2.8 Derivation of BPM Equations
, ~: F, o- _$ g$ c2.9 Imaginary-Distance BPM: Mode Solver6 o7 w! R6 m# b; N# [/ t0 F- i9 N
3 Assessment of Full-Vectorial Beam Propagation Method: j8 Y7 H- ? X/ L- x
3.1 Introduction1 R* u) r2 s) x6 I q! r
3.2 Analysis of Rectangular waveguide
- ^1 |8 f2 J$ q/ |3.3 Photonic Crystal Fibre
2 L( ]' ~# ~5 d7 }# v* K* r3.4 Liquid Crystal Based Photonic Crystal Fibre+ a2 n$ @1 i6 @# M5 i1 |, O
3.5 Electro-optical Modulators
9 ~$ {4 _& L1 G! e3.6 Switches' Y z |, u s
4 Bidirectional Beam Propagation Method* r: J! S( _& ~5 B% x. J9 O
4.1 Introduction
( h9 {1 e! x+ P- Z8 m7 X4.2 Optical Waveguide Discontinuity Problem- b9 d4 j5 k9 j; t p% ^
4.3 Finite element analysis of discontinuity problems# ]/ y2 s7 f1 s0 i
4.4 Derivation of Finite Element Matrices
9 Y+ H% ]1 X) d5 |4.5 Application of Taylor’s Series Expansion
/ M$ g7 S8 O X- A r3 S) \4.6 Computation of Reflected, Transmitted and Radiation Waves% s9 F( [9 Q6 y: H, f, Z6 ]: g
4.7 Optical fiber-facet problem
; Y7 V4 r$ q6 e: Q' e4.8 Finite element analysis of optical fiber facets
/ T* U9 K& p7 K5 D4.9 Iterative analysis of multiple-discontinuities
. z8 l! z3 ?" b: `( A4.10 Numerical assessment3 V6 h% e8 Y3 m. `
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
% n( \$ x+ d) X5.1 Introduction* L. e$ D# H0 Z0 d
5.2 Maxwell's equations
c' X" |" h) Y1 o5.3 Brief history of Finite Difference Time Domain (FDTD) Method; [* e: B# r, v
5.4 Finite Difference Time Domain (FDTD) Method
) R1 [9 }2 B* s" Z: O5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit$ ~/ q" W0 t! U4 u0 J7 t
5.6 Complex-Envelope ADI-FDTD (CE-ADI-, P, F- k3 _& P+ F( e# [
5.7 Perfectly Matched Layer (PML) Boundary Conditions
- a6 R% ~7 w1 P6 ?+ I: l4 j" B% f5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
9 c: {6 K& a8 Y+ f v5.9 PML Parameters
) u4 L$ F/ ?' Y% z* i1 w9 J5.10 PML Boundary Conditions for CE-ADI-FDTD' F/ [4 l( O+ T0 i! k& j2 v8 H
5.11 PhC Resonant Cavities5 `$ R" e7 v0 k/ `+ B
5.12 5x5 Rectangular Lattice PhC Cavity
, y l5 l% s& p* [5.13 Triangular Lattice PhC Cavity* s# J Y$ x6 B
5.14 Wavelength Division Multiplexing# w9 h$ n$ P( F) s
5.15 Conclusions5 a) W: E& Z: ?. @4 S
6. Finite Volume time Domain (FVTD) Method8 x/ n+ G' v- H% C: n' E
6.1 Introduction
% v1 U8 ?9 v- D0 @6.2 Numerical analysis
0 M/ k- O& V$ V* y+ s6.3 UPWIND Scheme for the Calculation7 E' b0 e" j6 P! r& [
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation8 U% d2 A4 n3 S5 x6 ~% R) |
6.5 2D Formulation of the FVTD Method6 d& ?, y& D2 B9 i4 ?" C
6.6 Boundary Conditions
' c, U, p9 N8 g; ` U8 U, d6.7 Nonlinear Optics' s$ R4 o0 h) `* W6 l+ [: ~5 ]
6.8 Nonlinear Optical Interactions
. O2 L5 N5 `' Y( i6.9 Extension of the FDTD Method to Nonlinear Problems0 T# B! t- u$ `) E
6.10 Extension of the FVTD Method to Nonlinear Problems! r/ R9 @; Z4 {1 v
6.11 Conclusions6 K. Y# F7 u8 G( w4 ^
7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
0 ?, B ]+ o* q$ ^0 m( b6 p7.1 Introduction; S9 N1 [7 c. U' I7 R# ^4 m
7.2 FVTD Method Assessment: PhC Cavity
" N4 `) R# y2 v0 `1 p# g7.3 FVTD Method Assessment: PhC Waveguide& W. t+ M0 ~; y; O
7.4 FVTD Method Assessment: PBG T-Branch5 T, ^, {8 G+ f, g# a2 n
7.5 PhC Multimode Resonant Cavity$ D: ]+ X+ r7 a
7.6 FDTD Analysis of Nonlinear Devices2 ` ^- R& z1 z/ d( j) P$ k& }' b
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires4 d# {( ]7 z+ _% I) Y- ^5 r
7.8 Conclusions
' E) u# ^4 E4 f( T# u! O8 ?& C8 Multiresolution Time Domain3 R0 C# L+ K" R1 n' n2 B9 \) v
8.1 Introduction3 f& ~3 [) C$ L! M) b" E5 \
8.2 MRTD basics0 T0 G: T7 I( w7 K$ C
8.3 MRTD update scheme, m Q! H7 Q3 T' b
8.4 Scaling-MRTD
0 G, g9 k5 y/ u8.5 Conclusions
: r# w* l) M/ _# R) Z& _* s9 MRTD Analysis of PhC-Devices
4 g: J1 E. f3 T5 x! v2 d9.1 Introduction
8 K- q j- |+ m$ ]* s& q9.2 UPML-MRTD: test and code validation
6 @# R9 ^$ I- V+ ^' T0 B9.3 MRTD vs FDTD for the analysis of linear photonic crystals8 n+ y0 w3 o- F/ a
9.4 Conclusions
1 |: ]9 a4 ^ d0 Q- P+ _1 ~10 MRTD Analysis of SHG PhC-Devices; @/ D- X2 a X7 v3 E- J+ W
10.1 Introduction
. e$ _* Y9 L+ M" \4 J10.2 Second harmonic generation in optics" W8 h& [4 a! S! K
10.3 Extended S-MRTD for SHG analysis ?) }6 a p$ v7 ], o
10.4 SHG in PhC-waveguide
# t: \ o# J) Y" n1 N4 D+ P10.5 Selective SHG in compound PhC-based structures
9 {2 n8 m( R. a) h6 v10.6 New design for selective SHG: PhC-microcavities coupling
$ t7 q2 ?1 u7 W1 f* w' ~* _10.7 Conclusions
2 N- O1 E, D% F0 q11 Dispersive Nonlinear MRTD for SHG Applications2 f6 }( X2 g4 J! k
11.1 Introduction
0 {7 Z4 k3 I. w5 g7 ]3 p11.2 Dispersion analysis
' V( k4 z }$ [) w11.3 SHG-MRTD scheme for dispersive materials, g, Q5 ~( K& M5 q7 ^
11.4 Simulation results
) z& F2 _7 Q. N7 M6 J! M11.5 Conclusions |
|