|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction6 _: A- b* A2 y1 q2 ^
1.1 Photonics: the countless possibilities of light propagation/ Z& B6 c1 a! G( U- {1 [
1.2 Modelling photonics
# J- s+ ~5 C+ U/ q% M+ c; N2 Full-vectorial Beam Propagation Method
7 m. O' p/ K l/ v6 M: f: a2 l, P2.1 Introduction2 D& k' g5 v- O1 p6 d$ `: W' C3 @
2.2 Overview of the beam propagation methods
5 J" l g* d4 j8 y9 n- h) ^0 F2.3 Maxwell’s Equations5 { h9 d, ?& n( ^
2.4 Magnetic field formulation of the wave equation( K7 U7 _+ r7 D# l9 Y
2.5 Electric field formulation of the wave equation6 u, g( U( H& ]% W
2.6 Perfectly-Matched Layer: f) c4 A y( O; w
2.7 Finite Element Analysis
8 O! c: p' X0 i* z2.8 Derivation of BPM Equations. z' ~* R/ |' h. o/ S8 Q1 s, z
2.9 Imaginary-Distance BPM: Mode Solver1 i$ d7 x2 c. B$ P% Y5 u9 e
3 Assessment of Full-Vectorial Beam Propagation Method
4 u `: C1 [& G; k9 s3.1 Introduction
7 L8 N& u* H" {# \- S6 M" i5 W9 H3.2 Analysis of Rectangular waveguide
/ \0 H7 M9 a9 h9 _) o3.3 Photonic Crystal Fibre
( J& r6 N9 Z3 y/ { }8 t3.4 Liquid Crystal Based Photonic Crystal Fibre
+ h5 D. V& U: t+ \* x# [3.5 Electro-optical Modulators( ]! K9 q, R; N# q4 o+ N, B+ ^# }
3.6 Switches! ]1 Q- x( E W# d5 C- i" X
4 Bidirectional Beam Propagation Method: q, O- G! o' m5 h2 L6 Y4 ?( _
4.1 Introduction
! ~+ B- i0 d' R! n4.2 Optical Waveguide Discontinuity Problem4 N1 ]& `' M4 ?; [7 M
4.3 Finite element analysis of discontinuity problems& T) P! O+ u- m3 d
4.4 Derivation of Finite Element Matrices0 v7 u* l) N4 f) D( n O
4.5 Application of Taylor’s Series Expansion# G' J( f1 [: e* v/ n0 T0 E
4.6 Computation of Reflected, Transmitted and Radiation Waves3 N1 t( ]5 F4 h
4.7 Optical fiber-facet problem
- }8 `7 @( Q) {4.8 Finite element analysis of optical fiber facets7 E/ g4 G- ]# n9 d
4.9 Iterative analysis of multiple-discontinuities
4 M+ [* S* ^9 C7 v4 `. L% I4.10 Numerical assessment5 u* T) C8 z4 F! E, s2 @* k$ E
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
0 h1 p* _9 |& k6 [/ q2 \ n5.1 Introduction- d( M1 s4 b$ C( D5 k
5.2 Maxwell's equations" b+ _8 z3 _) _" A4 y) Q G2 p5 L
5.3 Brief history of Finite Difference Time Domain (FDTD) Method) ?9 x- B$ b/ K9 b% N7 O4 u
5.4 Finite Difference Time Domain (FDTD) Method
: T1 J6 C1 e S' d5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit$ c+ \& L0 t' a" W7 N5 W
5.6 Complex-Envelope ADI-FDTD (CE-ADI-
5 Q* _) {% `0 g2 R; x: V: m ]# [) b5.7 Perfectly Matched Layer (PML) Boundary Conditions
# H7 P. ?7 [: }; w5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition! I4 n6 i& W% {% Y" R1 n
5.9 PML Parameters5 {9 @" _! h$ F0 U: G; t. `8 U) j
5.10 PML Boundary Conditions for CE-ADI-FDTD
5 j. K6 G. f5 Y5 B! l" @5.11 PhC Resonant Cavities+ F. ]' m' [' |1 R: a
5.12 5x5 Rectangular Lattice PhC Cavity
: e/ k" i9 h b8 r5 w5 v% {$ ^5.13 Triangular Lattice PhC Cavity( P% w5 l# Z& ]) n" o' M$ d
5.14 Wavelength Division Multiplexing
# u1 G/ \8 L6 G$ }( g5.15 Conclusions- `( Z5 X$ J/ _, Y) a/ Z+ C8 L
6. Finite Volume time Domain (FVTD) Method
8 \) X& w* _! z2 I2 ^) Y7 K" l6.1 Introduction2 L% s, M, V- S
6.2 Numerical analysis
/ H3 C, j$ W* ?! G1 y6.3 UPWIND Scheme for the Calculation( ?4 }# g, n; w7 W2 M
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
" q7 N! V# o# R) O6.5 2D Formulation of the FVTD Method* T5 ]. L* a/ U h ^
6.6 Boundary Conditions0 u% C, S j* U" y/ G& j* Z9 q
6.7 Nonlinear Optics {6 _; y6 l6 }( R. P; c
6.8 Nonlinear Optical Interactions
( p& }+ @9 g4 r% x8 k) V" s6.9 Extension of the FDTD Method to Nonlinear Problems
: @9 Y8 c. R7 X6.10 Extension of the FVTD Method to Nonlinear Problems! }% N Z ]0 K
6.11 Conclusions
& }: F* q, y: C9 ^7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
: b: L0 s" Z( S* f9 s7.1 Introduction+ T! X( Z+ |6 g6 D
7.2 FVTD Method Assessment: PhC Cavity
$ R2 C# O7 Z5 l# E7.3 FVTD Method Assessment: PhC Waveguide
. n$ p* p/ {% W# w0 W( v7.4 FVTD Method Assessment: PBG T-Branch- m7 B" I0 ?4 ^, l& y( W$ _+ M
7.5 PhC Multimode Resonant Cavity0 n& t' M- I4 d) [" N
7.6 FDTD Analysis of Nonlinear Devices: ]7 _) t, e* ?( i. a& H6 Z- a
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires1 T& ~# D' }, U5 k: X
7.8 Conclusions
7 u2 U X3 z- T, n% N8 Multiresolution Time Domain' d5 A1 _* J, s( Q
8.1 Introduction, N. k( l3 D& O. I4 _5 a& e
8.2 MRTD basics
7 q2 Y; m; _$ E3 p; H* G8.3 MRTD update scheme
3 w% v+ G/ v) {9 K0 x7 _8.4 Scaling-MRTD& M& X! b! e, C- S
8.5 Conclusions
- S6 H4 I6 U" j9 v9 f9 MRTD Analysis of PhC-Devices. E9 U, l" [; P- Q
9.1 Introduction
/ u6 b* T" e- w' `( b0 r, J9.2 UPML-MRTD: test and code validation; Z! \% @" x( j9 X+ U+ u9 k
9.3 MRTD vs FDTD for the analysis of linear photonic crystals
( b! D' j4 m G) [6 j9.4 Conclusions
/ o7 @6 H# \6 q10 MRTD Analysis of SHG PhC-Devices
0 `* V- {8 [/ L; V8 B10.1 Introduction
, \: [7 R* x7 X; g+ r10.2 Second harmonic generation in optics
/ e2 G ?0 D5 R) F10.3 Extended S-MRTD for SHG analysis
/ Y+ X1 W# w' O( Y+ |10.4 SHG in PhC-waveguide1 @# s9 y( d6 |% \* ~
10.5 Selective SHG in compound PhC-based structures
+ Q5 w2 Z) Y) @& s: P; u. u7 ^$ i10.6 New design for selective SHG: PhC-microcavities coupling
, _3 B+ E( E3 r( z" Y( X' E- U9 h10.7 Conclusions
0 g h% e/ }) ?7 m9 D4 H) D11 Dispersive Nonlinear MRTD for SHG Applications
: B! n0 d3 i5 E+ j1 @, {5 d11.1 Introduction K6 H! t J/ R( j
11.2 Dispersion analysis
G! u; \" E; [/ h% i' c4 B11.3 SHG-MRTD scheme for dispersive materials) r1 w2 {) _) Q% j9 r( L
11.4 Simulation results( W$ k F2 w7 z1 n* d" R$ n, a7 K" |
11.5 Conclusions |
|