|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction
* e( N( k/ `% U% n* N# b1.1 Photonics: the countless possibilities of light propagation
8 Z: N4 n1 W; r/ E3 L1.2 Modelling photonics* k; N5 A2 l; ~4 k) r% A
2 Full-vectorial Beam Propagation Method
* ^( }8 H% y) x: W0 _2.1 Introduction; b' ?/ B/ o, l+ }
2.2 Overview of the beam propagation methods
' t |& z1 k8 c; @2 i; f/ h7 d2.3 Maxwell’s Equations) Q' q$ Q2 b" u
2.4 Magnetic field formulation of the wave equation7 L5 s2 h4 S: Z( A7 Z- w& F7 a
2.5 Electric field formulation of the wave equation
: W% \ R5 ]1 r" z9 G* W8 ?" _2.6 Perfectly-Matched Layer" s# A; `$ y" l f" ^
2.7 Finite Element Analysis
9 Y9 p) O, i4 h2.8 Derivation of BPM Equations1 a$ Q: c- f6 G7 \' a
2.9 Imaginary-Distance BPM: Mode Solver
( Q2 g0 J! l# _. j8 a: R) J/ K3 Assessment of Full-Vectorial Beam Propagation Method
, \, V: i5 n& k. D- n$ U3.1 Introduction
3 d6 L' } z7 h3.2 Analysis of Rectangular waveguide6 `6 Z: v) B: @- D# F0 v
3.3 Photonic Crystal Fibre7 I" c& C9 \& L( v" r# }
3.4 Liquid Crystal Based Photonic Crystal Fibre8 L6 I7 H; E0 t% b$ N$ s
3.5 Electro-optical Modulators4 n; m6 l$ E, i: ~$ I
3.6 Switches
8 a1 l) _3 n' |# |* c& a4 M7 K8 j4 Bidirectional Beam Propagation Method
; l6 d$ l$ q6 x, ]" g2 T- ~4.1 Introduction
" r% N3 P- ~! |- V( }. s" P# \4.2 Optical Waveguide Discontinuity Problem( N! u7 d; }* q+ H8 _9 `/ e
4.3 Finite element analysis of discontinuity problems! Z% n- q0 N+ g5 u$ Y% l
4.4 Derivation of Finite Element Matrices) N! H% w9 w5 @( S2 @4 _( J8 Z
4.5 Application of Taylor’s Series Expansion
8 w& L2 s0 g* U" z, C* @4.6 Computation of Reflected, Transmitted and Radiation Waves
2 o7 s2 R3 [5 I+ ` F; y4.7 Optical fiber-facet problem
/ \8 f! U9 o1 o4.8 Finite element analysis of optical fiber facets
6 H* n; { @8 S5 d! n0 l4.9 Iterative analysis of multiple-discontinuities
5 n6 G, i. J Z) R4.10 Numerical assessment+ A3 J7 P+ v( ?% Z5 Q& {4 u1 O# P
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
8 d1 k9 G- L3 `1 Z9 u' ~" _5.1 Introduction
O1 m/ i& p% b& X0 k) d0 p/ T5.2 Maxwell's equations0 @1 @5 w- y! Y1 o
5.3 Brief history of Finite Difference Time Domain (FDTD) Method# b' T9 Z* z! M+ {1 j) q( Q$ y5 B V
5.4 Finite Difference Time Domain (FDTD) Method
8 N2 h% ^$ D+ r9 F, D! }' j5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit
^4 m: b1 k, U$ ~1 d5.6 Complex-Envelope ADI-FDTD (CE-ADI-
) p p+ z3 ~/ a$ e, }6 _5.7 Perfectly Matched Layer (PML) Boundary Conditions: `* z l3 x8 \$ A
5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
7 o2 \3 u' F! `5.9 PML Parameters2 v, [* e8 d* M+ d
5.10 PML Boundary Conditions for CE-ADI-FDTD
6 X* F* S1 i2 X5.11 PhC Resonant Cavities
) l3 N2 B5 k/ h4 z h5.12 5x5 Rectangular Lattice PhC Cavity
2 _ _2 e% r4 P/ a/ ~5.13 Triangular Lattice PhC Cavity
3 n8 @- M$ u9 N* h: p1 Y! k5.14 Wavelength Division Multiplexing# {* J" I/ A( c" ?# W. x% Y
5.15 Conclusions
4 A/ A7 i* [7 o+ _6. Finite Volume time Domain (FVTD) Method
) h; P& E( f! I8 h! f6.1 Introduction
4 Q2 V' }* M& u6 J6.2 Numerical analysis! h4 D- \* U4 T& x! T& d
6.3 UPWIND Scheme for the Calculation
2 w: U: K! K7 g8 G: M J K6.4 NON-DIFFUSIVE Scheme for the Flux Calculation9 e n% g b k* r5 C
6.5 2D Formulation of the FVTD Method2 d) M3 O" A4 \+ X9 D7 g1 E5 o
6.6 Boundary Conditions
$ j2 g- M! s- A* n1 @' F+ _6.7 Nonlinear Optics2 x% _' x3 T- \1 _9 H2 Q
6.8 Nonlinear Optical Interactions
4 W) z# h7 [$ a# M" W6.9 Extension of the FDTD Method to Nonlinear Problems8 Y4 V' \! [' K/ z
6.10 Extension of the FVTD Method to Nonlinear Problems8 M2 Q* _8 {$ D, E7 \! J
6.11 Conclusions
: z. y6 D5 L/ X7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
5 h+ {3 F3 u' F, w* _ K0 G7.1 Introduction
% y) M2 b q' G7.2 FVTD Method Assessment: PhC Cavity9 V3 y2 V3 e% Q- d+ d) u
7.3 FVTD Method Assessment: PhC Waveguide& [+ [# y* P/ s, ~4 \/ W* T
7.4 FVTD Method Assessment: PBG T-Branch
7 w# t7 \ t2 A, ^7.5 PhC Multimode Resonant Cavity
+ \' C' V6 V2 a7.6 FDTD Analysis of Nonlinear Devices
9 i8 ]7 Y9 T1 P7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
+ ~8 S% p# V }5 r1 Q/ F7.8 Conclusions
+ D* y% j$ {, K7 w8 Multiresolution Time Domain7 K# {# }5 O! o( |8 F( D) E- G
8.1 Introduction
+ c, q( Q: P. C1 W: f3 G s8.2 MRTD basics) Z8 m1 i+ s, E+ m+ K3 K
8.3 MRTD update scheme6 ^* @ { ~ N: w5 W4 d, {% z* B
8.4 Scaling-MRTD# \2 j/ W9 X$ d5 |
8.5 Conclusions, `" l7 Z H3 a) H
9 MRTD Analysis of PhC-Devices" k2 ^! v) V3 K+ i" O
9.1 Introduction' F, b* |/ v/ v/ d$ C
9.2 UPML-MRTD: test and code validation
0 D5 W' d7 @0 P1 d8 f2 U: T" Y9.3 MRTD vs FDTD for the analysis of linear photonic crystals
9 y* B+ w$ u' X6 U) h6 k) z. s9.4 Conclusions
; p: z9 c4 _) C% ~/ \/ B: w+ N10 MRTD Analysis of SHG PhC-Devices; T: R6 A! Y0 `3 w, N
10.1 Introduction+ I( b; k" k3 a4 n S
10.2 Second harmonic generation in optics9 T, ?. \. ^" q$ J6 U( \5 ^$ t
10.3 Extended S-MRTD for SHG analysis$ Q0 k6 U+ ]* q% s" l: @
10.4 SHG in PhC-waveguide0 q% M+ U5 k# T& a
10.5 Selective SHG in compound PhC-based structures
9 ^( |7 W' L) A" k4 _10.6 New design for selective SHG: PhC-microcavities coupling
8 Y X7 i4 E+ ], W' @5 B8 B3 Z' E7 N10.7 Conclusions# `1 z$ y6 B0 ^. B3 G2 W
11 Dispersive Nonlinear MRTD for SHG Applications
5 ]+ F6 l) H" C: i e: b9 q+ I9 n11.1 Introduction. A8 w9 m/ \ `, E2 O2 A+ o
11.2 Dispersion analysis" D. S; f" A' ^) [
11.3 SHG-MRTD scheme for dispersive materials
$ l% H4 ]/ W" q0 p11.4 Simulation results3 n$ C+ T: w/ l( W1 D
11.5 Conclusions |
|