|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction
3 |* H8 K" \; p4 L/ L* T; y; D1.1 Photonics: the countless possibilities of light propagation
1 ^3 q0 Y& P; ~1.2 Modelling photonics( e7 h6 V) G/ W
2 Full-vectorial Beam Propagation Method, e @3 u* Z( Q O6 u( m
2.1 Introduction
7 R1 s, j ?& N* V2.2 Overview of the beam propagation methods
3 c& ^( d, j( W5 p$ ]6 E2.3 Maxwell’s Equations
/ X' n- e# X2 Q0 P" U, [2.4 Magnetic field formulation of the wave equation
' w6 D% a/ N3 }0 v2 `# m2 I2.5 Electric field formulation of the wave equation
* P6 ~: x4 A0 u! F2.6 Perfectly-Matched Layer: B0 T2 P& Z0 U: T" G, h: a$ d$ r1 R
2.7 Finite Element Analysis
. a7 k& a; j1 x8 a2.8 Derivation of BPM Equations% e/ D3 Y; B' l* t
2.9 Imaginary-Distance BPM: Mode Solver6 @: U7 N: S) f ?
3 Assessment of Full-Vectorial Beam Propagation Method5 S; I+ C4 x; O, ?; r
3.1 Introduction6 o. X2 m& }5 h3 E
3.2 Analysis of Rectangular waveguide
; C2 u3 I7 N5 `- d( w. A; r; ^; g" D3.3 Photonic Crystal Fibre
0 n7 }- h% a7 k" a1 d2 I$ a/ \3.4 Liquid Crystal Based Photonic Crystal Fibre
$ B; u/ _- \: Z: W4 S5 K0 k* |3.5 Electro-optical Modulators
( t! {, v0 z" n3.6 Switches* ?3 F( \% O5 B" Y, N- L. d( H
4 Bidirectional Beam Propagation Method
' S4 k/ c% H* [, P, N9 p& T4.1 Introduction
0 N' e! N' S8 G0 O4 [4.2 Optical Waveguide Discontinuity Problem$ g4 \7 H# Y" q1 I, h5 u) [
4.3 Finite element analysis of discontinuity problems
- L# C# t- V# q, F3 n( g4.4 Derivation of Finite Element Matrices" n, K6 v" {8 H3 g, t* x8 j. g" s
4.5 Application of Taylor’s Series Expansion) G- Q/ I8 U) m5 l% `) G% @7 Y
4.6 Computation of Reflected, Transmitted and Radiation Waves, h3 x, O% P% m! {7 V+ s0 r
4.7 Optical fiber-facet problem
" ]# I5 B' t0 B A. j4.8 Finite element analysis of optical fiber facets. w4 n) u+ H* X ^/ ~4 ^4 b
4.9 Iterative analysis of multiple-discontinuities3 W) o) X# @* j% z: N
4.10 Numerical assessment
3 b3 o+ B0 S9 a9 P' z7 ~0 W5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
1 L/ n o+ Q& q2 u1 H5.1 Introduction
, t1 L+ B2 t& s: Y5.2 Maxwell's equations2 b' l$ E+ C5 T. n- ]
5.3 Brief history of Finite Difference Time Domain (FDTD) Method$ u, e; s9 L0 K$ n, k5 T; k1 n& U
5.4 Finite Difference Time Domain (FDTD) Method v+ E) y. s5 X; }
5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit# z& x8 Z- G. E. |: p
5.6 Complex-Envelope ADI-FDTD (CE-ADI-
# H! C4 ~5 r2 k6 p0 Q5.7 Perfectly Matched Layer (PML) Boundary Conditions
1 c4 d3 Z6 Q: F5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition; e" j6 Z9 }6 K. H% @( [ {5 t6 s$ x
5.9 PML Parameters* [2 L* B( I; x3 a
5.10 PML Boundary Conditions for CE-ADI-FDTD
/ t; ]7 h! S1 @" q p* g5.11 PhC Resonant Cavities
1 L! P6 N' D5 \, ?5 S5.12 5x5 Rectangular Lattice PhC Cavity2 A* I1 H% L U- d7 f# T# A& j0 `3 ^
5.13 Triangular Lattice PhC Cavity& C: Y3 j$ L3 z6 W
5.14 Wavelength Division Multiplexing
* T% |1 u! T0 Q0 H; ~1 s6 O5.15 Conclusions
' U. `% h" t% V4 u' M/ ~$ ~6. Finite Volume time Domain (FVTD) Method+ \9 c9 L C% A+ B" l
6.1 Introduction. M4 A6 D! K4 z- v; \
6.2 Numerical analysis
1 O/ o) t$ v A8 x" x/ `& e0 ^6.3 UPWIND Scheme for the Calculation: o9 p5 N. A# w& {+ ~* C7 S6 j; C0 d
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
! M! B9 A, g1 h6.5 2D Formulation of the FVTD Method6 Z- X; h. K. f
6.6 Boundary Conditions
4 `$ K' Z7 y+ o8 `# a+ e! U# K" b6.7 Nonlinear Optics1 ? A3 b8 G/ I9 H1 R! A8 w
6.8 Nonlinear Optical Interactions7 V9 e0 O9 v0 G( m# _8 Z
6.9 Extension of the FDTD Method to Nonlinear Problems
" K6 U, B2 C7 h A7 e; x4 E6.10 Extension of the FVTD Method to Nonlinear Problems
/ `/ N5 i: M5 l$ X4 C6.11 Conclusions
`' N2 U' m% c9 M2 T g7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
5 J& f+ J; o; z% J3 W0 o. z7.1 Introduction4 z$ Z. B M/ d8 C1 w
7.2 FVTD Method Assessment: PhC Cavity
w) c0 E2 L% H; {. e' {' [0 V7.3 FVTD Method Assessment: PhC Waveguide
) e! d7 n8 l$ x7.4 FVTD Method Assessment: PBG T-Branch. d* l" z5 I4 D+ ]
7.5 PhC Multimode Resonant Cavity
* X" p ^3 `: x) n7 A; Q+ X+ m: g7.6 FDTD Analysis of Nonlinear Devices( n+ y3 ], ^' b z F
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
! x k" ^4 K9 `* k) y/ \7.8 Conclusions
( y, t* \5 ^9 ?* | B$ c. |: G8 Multiresolution Time Domain3 v. v, {1 j( ]
8.1 Introduction" T) `' A: L3 w! H
8.2 MRTD basics
" b- Y: Q# k: V8.3 MRTD update scheme
) c2 Q) R( U s, `6 {8.4 Scaling-MRTD! M6 |% m6 S7 r# f) w' D
8.5 Conclusions
4 b3 b5 J1 d2 L1 X H+ K' B! e7 a9 MRTD Analysis of PhC-Devices* H3 L4 e9 F7 x6 e$ @
9.1 Introduction) U+ h; Y C0 \: |. T" g" s
9.2 UPML-MRTD: test and code validation
/ s, q' {3 H K' o5 [9.3 MRTD vs FDTD for the analysis of linear photonic crystals* |1 w1 [: T$ k, b; z
9.4 Conclusions ~# V, u5 m' e' [
10 MRTD Analysis of SHG PhC-Devices! z5 Z, i# g* V3 P/ |1 J" i$ _
10.1 Introduction
2 R' R: T# s* c d, q) w10.2 Second harmonic generation in optics5 l, W/ r7 X5 H. b$ c0 e2 ?' A4 A
10.3 Extended S-MRTD for SHG analysis
0 t0 Z/ O- ?6 A* ~9 A6 y10.4 SHG in PhC-waveguide
, F0 ]0 d. o8 M: G8 l+ D* K4 H10.5 Selective SHG in compound PhC-based structures
' R! x T7 N" B( h3 R0 Z9 l10.6 New design for selective SHG: PhC-microcavities coupling( i6 X6 ^1 `* ]1 Y" ?+ p
10.7 Conclusions+ e7 ?$ P& ~7 t) @7 `( ]$ @- @
11 Dispersive Nonlinear MRTD for SHG Applications7 z( `. e- R4 D1 r
11.1 Introduction
+ I4 X3 @/ ` V7 z8 x( `$ u6 ^$ ?11.2 Dispersion analysis
, m, w4 ~; e# S3 o7 |11.3 SHG-MRTD scheme for dispersive materials% ? H1 g- k4 C; Y) h! O0 p
11.4 Simulation results
& M0 [" }0 a5 I; i11.5 Conclusions |
|