找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

巢课
电巢直播8月计划
查看: 28|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

156

主题

559

帖子

1202

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
1202
跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents- y- ^; c9 t; W! v
Preface xv
7 n8 {1 W( q/ `$ s: tAcknowledgments xvii
! k- J% Z- y6 v4 W4 FChapter 1 Probability Concepts 1
  T5 I& A6 V- A2 I; x) a1.1 Introduction 1) i* }) c8 p( O' _
1.2 Sets and Probability 1
5 s% v, ^% o: j1.2.1 Basic Definitions 1: E+ U$ `  K) e
1.2.2 Venn Diagrams and Some Laws 3
/ w- ]3 v  [0 J$ f1.2.3 Basic Notions of Probability 6- t) }) N4 Y4 J+ I" l2 m( T
1.2.4 Some Methods of Counting 8, R$ o' d1 v* f9 ~/ T
1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12: R4 j! j. g4 [  W  \. q9 ]
1.3 Random Variables 17
6 g# u+ f+ g9 }; `1 z! c1.3.1 Step and Impulse Functions 17! |2 `8 ?) {8 W' c( ~5 B
1.3.2 Discrete Random Variables 180 W8 @. Q* G- E9 A$ ]9 ]1 X1 S: G
1.3.3 Continuous Random Variables 20
2 N- \, r, E+ B1.3.4 Mixed Random Variables 22- v/ C% c4 y9 P! J$ R: O0 A
1.4 Moments 23( M9 O4 r& W: [. h
1.4.1 Expectations 23
7 f$ ^6 a+ v/ r" p" z6 w1.4.2 Moment Generating Function and Characteristic Function 26
. |8 g/ l5 ^) F$ |* B6 c1.4.3 Upper Bounds on Probabilities and Law of Large3 i, \0 W- W+ p+ j* v3 S
Numbers 29
" e) h+ @* B5 E+ \% U1.5 Two- and Higher-Dimensional Random Variables 319 O. n! ], W. R
1.5.1 Conditional Distributions 330 W/ J1 Z5 w" m' ^  N) _7 a
1.5.2 Expectations and Correlations 41- Z5 D& X  z7 k( W2 m) G
1.5.3 Joint Characteristic Functions 44' I; s2 n' ~# G0 I# \
1.6 Transformation of Random Variables 484 b" e+ B6 h/ {/ H1 {) J0 `1 b" O
1.6.1 Functions of One Random Variable 499 i2 l0 k' q: B& a
1.6.2 Functions of Two Random Variables 52
* `/ i) k( o: y1.6.3 Two Functions of Two Random Variables 59, E# g3 e' |2 {6 M! ~3 u) [$ n8 P
1.7 Summary 65
% P, K0 {3 P% Q/ O* u, f4 bProblems 65) f; X2 e, S% a: m; z3 i' g
Reference 73" V0 o  U5 f9 g7 ^9 W0 o  O
Selected Bibliography 73
" R- m# C3 P5 K/ i8 mChapter 2 Distributions 75
( g% e9 |2 k* x5 R9 w2.1 Introduction 75  R$ J2 O* R  \) ?; X
2.2 Discrete Random Variables 75* M/ \  q1 s: b4 D7 y# ?( }
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 755 _. y; f- s. X  r4 d/ ?8 c
2.2.2 The Geometric and Pascal Distributions 78$ |" X) J% h4 ~* x. ]5 l( J7 x
2.2.3 The Hypergeometric Distribution 82
- Z7 x& b( N' x" e, L2.2.4 The Poisson Distribution 85: ~9 F! M- n) _. I/ e- w
2.3 Continuous Random Variables 88( t8 t  e' w+ N8 e- O8 o  w& S5 g0 }
2.3.1 The Uniform Distribution 88, ]! F) F& J( r0 F
2.3.2 The Normal Distribution 89
5 n/ O8 o! Y+ w0 A& {- R$ Q2.3.3 The Exponential and Laplace Distributions 96$ |! B2 G2 W* M5 l
2.3.4 The Gamma and Beta Distributions 98! f: S, D6 E6 g4 N# m: X9 B" a
2.3.5 The Chi-Square Distribution 101" F& H( \( i+ k+ P. F3 |( A) N( k9 o
2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106
, f" f6 T& H( w2.3.7 The Nakagami m-Distribution 115, N. p' g( y, R' J7 y( Z, L
2.3.8 The Student’s t- and F-Distributions 115# M9 a# l! x' o: Q! w+ m
2.3.9 The Cauchy Distribution 120
' s( R: N& j2 j4 v' W) i2.4 Some Special Distributions 121
% ]: H8 Q# t% {4 v3 b+ L4 d2.4.1 The Bivariate and Multivariate Gaussian Distributions 1214 f. u) E0 ^, _9 S' Y3 K- L" O
2.4.2 The Weibull Distribution 129
; B* ], Q7 H& W0 ^2 w. ]2.4.3 The Log-Normal Distribution 131" [- k+ r. Y8 b; F7 v8 G+ [3 m* c) R9 I
2.4.4 The K-Distribution 132; O* ]( W2 ]: p
2.4.5 The Generalized Compound Distribution 1358 w2 S( _2 R2 p, `( g" h
2.5 Summary 1364 l$ ?  P* O3 Z) q; D8 W6 A
Problems 137
  R+ w8 N9 _8 k9 m7 _5 DReference 139
) Q0 W( _' w0 \Selected Bibliography 139
% U2 }& L) X2 \8 j" ^Chapter 3 Random Processes 1414 {8 i! I" G. J) O# t( ]
3.1 Introduction and Definitions 141* G  h9 ?. N( G! K4 }$ ~
3.2 Expectations 145# H, x! s  i0 d3 U( J* q( e
3.3 Properties of Correlation Functions 153
1 J: y- S1 E; I3 L/ v2 U3.3.1 Autocorrelation Function 153/ Y5 q% R; j* u$ }1 J' |/ P! }3 A
3.3.2 Cross-Correlation Function 153
; h7 _" O0 F* ~1 D& k6 v' l3.3.3 Wide-Sense Stationary 154/ N# N. ^. A8 d' o
3.4 Some Random Processes 1565 l. R5 R" Z$ `& d
3.4.1 A Single Pulse of Known Shape but Random Amplitude
% i" e9 \. d  ]9 a9 b  ^and Arrival Time 156
! i; Q: l3 s- a$ S" O+ c4 D# c3.4.2 Multiple Pulses 157; ~4 [) H, _0 g
3.4.3 Periodic Random Processes 158
$ Y7 Q" [( F( X. b9 W3.4.4 The Gaussian Process 161
- O8 e6 b" C# F6 h- s3.4.5 The Poisson Process 163) p) K  u5 x7 L6 S. c/ A
3.4.6 The Bernoulli and Binomial Processes 166
; ?! @2 z. r- N# z) g. A3.4.7 The Random Walk and Wiener Processes 1681 j8 W, t  X6 T4 R
3.4.8 The Markov Process 1726 x& g5 g2 ^9 \( m
3.5 Power Spectral Density 1742 A3 ?1 i  l* c; a# D2 g
3.6 Linear Time-Invariant Systems 1785 |( M4 {6 @  r2 ^3 F
3.6.1 Stochastic Signals 179
: |. c! |5 |4 R  U3.6.2 Systems with Multiple Terminals 185
# `" b3 r6 I* p; `+ h3.7 Ergodicity 186; @9 P& k& k1 ~5 r' H
3.7.1 Ergodicity in the Mean 186; m* B+ a8 B  P7 g
3.7.2 Ergodicity in the Autocorrelation 187
0 `2 J5 V8 F! p8 T3.7.3 Ergodicity of the First-Order Distribution 188
2 c. x7 c$ K+ \' ^7 K3.7.4 Ergodicity of Power Spectral Density 188
0 Q% Q9 v, G; f8 o( F5 c8 [0 I* L3.8 Sampling Theorem 189
+ t( ?( I  l1 W4 m3.9 Continuity, Differentiation, and Integration 194
6 P0 q% Q* d6 b7 \3.9.1 Continuity 194
2 Q' D$ V" _# z- |* a5 v. X4 p2 Z3.9.2 Differentiation 196
- E3 ]1 Q8 f$ A' `6 z3.9.3 Integrals 199
2 t3 Q; J5 [1 v2 z5 u; Y1 u3.10 Hilbert Transform and Analytic Signals 201! M" @6 n( G, q$ [
3.11 Thermal Noise 205
9 g# Y1 y" H* e, E4 p( w+ H3.12 Summary 211. e( @; d* _9 x+ x6 _) _
Problems 212
. h% u! I- r3 jSelected Bibliography 221. a" B5 z4 f5 _
Chapter 4 Discrete-Time Random Processes 2234 e- f$ d& {0 ^9 k/ v0 F+ F, h* U
4.1 Introduction 223" N4 M, D5 R: c6 b2 T
4.2 Matrix and Linear Algebra 224
( k' f/ I- {3 `, Z0 W: a4.2.1 Algebraic Matrix Operations 224& ~/ }4 K3 d. i  O$ d' _$ X
4.2.2 Matrices with Special Forms 232' |7 a/ d! Z! Y8 f, i$ F: q
4.2.3 Eigenvalues and Eigenvectors 236
7 q1 i. F1 \3 G  E4.3 Definitions 2458 O3 I# V2 U7 R' ^2 p
4.4 AR, MA, and ARMA Random Processes 253% g- R. J* h$ z3 `5 @  o7 l1 L) [
4.4.1 AR Processes 254
9 t; A# B2 `+ W2 W! U' A$ W4.4.2 MA Processes 2627 R6 B: B: X3 ?& L: g: P
4.4.3 ARMA Processes 264
# {7 A8 s2 }# L0 d* Y4.5 Markov Chains 2660 W' q  I% u. s4 d) Z
4.5.1 Discrete-Time Markov Chains 267( p1 X: D5 H/ M
4.5.2 Continuous-Time Markov Chains 276- F3 B5 u6 H7 n
4.6 Summary 284
( C; B! V$ n& f0 W: cProblems 284
, x2 F$ U1 X7 rReferences 287
. B. X% |; `5 f' {( l, `. y+ ^( dSelected Bibliography 288( M$ {) e  d+ |. f) y# B/ f2 u, I' |
Chapter 5 Statistical Decision Theory 289
6 F3 z+ `3 q0 ^# t8 l5.1 Introduction 289: `4 y" z2 L: _" ?1 z. n9 j
5.2 Bayes’ Criterion 2918 |5 D6 q  c( v
5.2.1 Binary Hypothesis Testing 291
* u' [. x! i+ V" S' T& o8 R" B5.2.2 M-ary Hypothesis Testing 303& g; @+ g0 u" B$ K0 S5 ]; m8 {6 A
5.3 Minimax Criterion 313' Q/ G2 Y( X' o: e& i
5.4 Neyman-Pearson Criterion 3175 X1 \" S2 @1 M
5.5 Composite Hypothesis Testing 326
4 G! a4 f6 O# H5 X( c! B& |5.5.1 Θ Random Variable 327
- Z! O4 p6 M7 ?+ n5.5.2 θ Nonrandom and Unknown 329
4 W- f$ `7 k! c: ^5.6 Sequential Detection 332
: t6 P. o* a3 P4 G" U2 Q. K5.7 Summary 337
: A, ?; G; W3 W/ B+ VProblems 338
) ~2 r/ W' G: h" G* K5 \Selected Bibliography 3434 N/ [1 Y5 i  ^$ z; Y. z1 {
Chapter 6 Parameter Estimation 3457 ~2 ~6 W  E" K7 G
6.1 Introduction 345
* U4 V0 b9 |( K4 t1 u7 N) S6.2 Maximum Likelihood Estimation 3466 o: {8 B/ T! h! n6 T
6.3 Generalized Likelihood Ratio Test 348
5 ^# `6 c6 X8 I% E2 w, P6.4 Some Criteria for Good Estimators 353- o5 ^# |, d$ ~' H8 B7 G
6.5 Bayes’ Estimation 355, s) ^% j: x6 ]1 q% |' m
6.5.1 Minimum Mean-Square Error Estimate 357# a$ P. k' `3 h5 O  R0 B
6.5.2 Minimum Mean Absolute Value of Error Estimate 358
' h  Y9 @  C. h4 F$ Z# e6.5.3 Maximum A Posteriori Estimate 359
$ U7 [) H* E  o& }0 o" k$ i6.6 Cramer-Rao Inequality 364/ ?, x4 s& g% D3 c' D3 {
6.7 Multiple Parameter Estimation 371
- B( j2 \5 v- }/ l( ~. n6.7.1 θ Nonrandom 371
" u4 o2 Q' d. U1 O6.7.2 θ Random Vector 376( R+ k5 g2 Q  G; ^/ e9 T& x
6.8 Best Linear Unbiased Estimator 378
0 S) `. W! m- f* Q: }' L+ y6 ]6.8.1 One Parameter Linear Mean-Square Estimation 379
4 O, q* n6 S  O* y# l- z6.8.2 θ Random Vector 3819 \" C) A% z& d4 N* f, d$ {
6.8.3 BLUE in White Gaussian Noise 383$ w( a, [/ u4 M4 K+ j& ^& b
6.9 Least-Square Estimation 3889 s- q3 b7 s$ s& ]# B+ K: }1 }/ V
6.10 Recursive Least-Square Estimator 391
8 j( q1 F/ \& ^& V  ]$ f8 }6.11 Summary 393
% M3 w% _  p! }5 i3 D1 @Problems 394% {1 E: d2 C4 Q* p& Z
References 398: p1 a2 X  ^  d, ?
Selected Bibliography 398
9 ^  F8 c8 T, s4 P3 i( [+ GChapter 7 Filtering 399
' Y* j* d# t- ^/ R2 ~" p7.1 Introduction 399
# Y! W  {+ p$ B* X5 f% o7.2 Linear Transformation and Orthogonality Principle 400
2 Q9 i9 c1 S0 l" p7.3 Wiener Filters 4096 `# j4 ?- b/ h/ T% w. f4 ]
7.3.1 The Optimum Unrealizable Filter 4107 U: ^4 Q- n! Q  @9 P) L
7.3.2 The Optimum Realizable Filter 416* ?5 W- }. o8 `/ z0 x
7.4 Discrete Wiener Filters 4242 T! Z: b- x6 n8 i+ W7 z- X5 r
7.4.1 Unrealizable Filter 425& q# Y# l* `1 j0 a# V
7.4.2 Realizable Filter 426; P: j$ G5 G' @
7.5 Kalman Filter 436, ~+ ^. d: I5 t0 b) b" Q3 n8 m
7.5.1 Innovations 4370 c+ C: `, f" l* l0 _, |) t( [
7.5.2 Prediction and Filtering 440$ t0 y# O5 \2 ?5 q7 H
7.6 Summary 445
! x4 d7 ?/ v' M# v) R* i1 O& nProblems 445
& A1 N8 K" Z: j: H6 h9 H6 U5 j6 ^9 ZReferences 4486 f) |$ T' ~# m; g
Selected Bibliography 448; Z' `# ~- u0 N8 {2 z0 P7 H. E$ a
Chapter 8 Representation of Signals 449
6 y* ^& J) d( x# a0 a. v8.1 Introduction 449
" b  E% V+ w2 g; |! H8.2 Orthogonal Functions 449
! v9 w5 W9 n) I! b0 R) M: C2 _8.2.1 Generalized Fourier Series 451
5 @8 J) p! G! [8 h+ ~4 l5 k8.2.2 Gram-Schmidt Orthogonalization Procedure 455
4 a; k" |9 x' ^" M; _7 ^8.2.3 Geometric Representation 458& c2 J2 }: m! w0 p5 {) S
8.2.4 Fourier Series 463  b5 j' H6 @$ }
8.3 Linear Differential Operators and Integral Equations 466" {9 P1 g8 x+ _( I
8.3.1 Green’s Function 470, o* s' t# T& l8 G& Z5 M: G
8.3.2 Integral Equations 471
7 q$ l. L* |# A4 n5 d# z5 i8.3.3 Matrix Analogy 479* C4 R) }8 r1 I8 y! ^/ M/ S8 y
8.4 Representation of Random Processes 4803 r& q. ?5 ~' A* p) `6 \) b
8.4.1 The Gaussian Process 483
7 M9 m3 l6 J* p, z8.4.2 Rational Power Spectral Densities 487
7 t' A8 C' R+ x% T" y! j( H8.4.3 The Wiener Process 492
( G0 N% a3 j5 p! F4 ]+ \5 p- O9 R8.4.4 The White Noise Process 493
8 C. c  {4 @" d$ g" H# J% |# \8 X% j8 b8.5 Summary 495! e( @6 s: e& K* T: `% `
Problems 496. G2 V  |6 F: M0 u4 O! ^# [  `
References 500
- w: O; b% Z- T2 [5 z  D& LSelected Bibliography 500+ v& k2 \1 H, a0 h, D0 ?
Chapter 9 The General Gaussian Problem 503
. e  |' w1 C, y9 s9.1 Introduction 503; x) I* p7 [0 l6 ]( c  E
9.2 Binary Detection 5033 h# b! g% Y" U, i/ g' Z4 g
9.3 Same Covariance 505
1 ^( V) i: E4 j0 ~8 T9.3.1 Diagonal Covariance Matrix 508. X+ N, j% i; o4 Z
9.3.2 Nondiagonal Covariance Matrix 511; u9 G2 X5 x' M1 c) z
9.4 Same Mean 518  l! X$ ^9 B) G$ n! L5 L
9.4.1 Uncorrelated Signal Components and Equal Variances 5197 h6 O: S. ]; v, A
9.4.2 Uncorrelated Signal Components and Unequal1 X* c: e+ k6 m. \* }+ v! j
Variances 522
5 L" @2 _' Y7 Z  E2 p7 D9.5 Same Mean and Symmetric Hypotheses 524( ^9 i. C7 S/ h7 U* u
9.5.1 Uncorrelated Signal Components and Equal Variances 526
+ t0 K/ f" M" V7 G& i$ Z! C" H9.5.2 Uncorrelated Signal Components and Unequal  D* X/ u5 X' t4 v6 y+ D
Variances 528% ]' C: Q! C0 d0 T: F! q
9.6 Summary 529+ A4 p9 A3 h3 C! B
Problems 530
+ P2 s5 W+ t, N* Z* p4 i$ ~9 AReference 532: l- S. y+ J. t2 M
Selected Bibliography 532
7 L! V, A$ K  {$ {Chapter 10 Detection and Parameter Estimation 533
; G% @8 U3 t, N& V10.1 Introduction 5333 }( D5 R' O( ?$ L* g; s( _
10.2 Binary Detection 534
7 C' C* \/ e7 M, j* p10.2.1 Simple Binary Detection 5346 Y3 O5 W# ?/ x3 U
10.2.2 General Binary Detection 543% b; o2 a" |# F- F, p1 v  N
10.3 M-ary Detection 556- f% c; z& @# Q
10.3.1 Correlation Receiver 557
4 t- g: y2 S# _' Y10.3.2 Matched Filter Receiver 567$ P8 _( G- n$ P# [5 o2 g9 P
10.4 Linear Estimation 572
# }7 N3 _& u+ H$ Y4 R" Y10.4.1 ML Estimation 5738 l. v1 B2 ~$ `6 t! E0 k( x0 v
10.4.2 MAP Estimation 575
' ?4 f& i& D: C7 w10.5 Nonlinear Estimation 576, D# b5 m) m! S
10.5.1 ML Estimation 576& `4 l/ ~" Y* F: T6 q. m
10.5.2 MAP Estimation 579
; w- e3 L! I! E10.6 General Binary Detection with Unwanted Parameters 580
* I+ {6 ]$ Z3 p. _) ~& S# @% c10.6.1 Signals with Random Phase 583
6 A0 c; \$ u$ ]: T9 b' d) ^3 Q10.6.2 Signals with Random Phase and Amplitude 595
4 N* _# ]( ]) \! X( t& S10.6.3 Signals with Random Parameters 5989 ]1 h( a* h. a
10.7 Binary Detection in Colored Noise 606/ o% j' j# j6 r" U1 G) K& a
10.7.1 Karhunen-Loève Expansion Approach 607" N$ R  p1 _  F5 f9 ^
10.7.2 Whitening Approach 611
/ v0 t3 [7 T- i" y. }! V9 I10.7.3 Detection Performance 6153 \) B+ C: K  J! V2 K; `: P9 m. f
10.8 Summary 617" G) \# S: H5 M4 y- X$ a# _" S
Problems 618
. S( e. a( W& E5 R$ bReference 6269 t) W3 ]9 @6 j+ _, v6 U
Selected Bibliography 6266 J) o  j$ `# U/ I/ y2 G, K
Chapter 11 Adaptive Thresholding CFAR Detection 627
$ \# y* Q2 j  e. V6 |: c% p11.1 Introduction 627
- w% M$ M/ u$ o' _' K11.2 Radar Elementary Concepts 629
7 a; v  {' ?- p  ~5 l* ^1 i11.2.1 Range, Range Resolution, and Unambiguous Range 631
3 X, ]0 u, ~" I2 o/ C8 J# ?11.2.2 Doppler Shift 633, [- S2 |* l8 y
11.3 Principles of Adaptive CFAR Detection 6345 i! a( G5 t2 o8 ~" y
11.3.1 Target Models 6405 J' j. Z+ k% c- P+ p
11.3.2 Review of Some CFAR Detectors 642$ H, O; j2 A" c% `6 ]! ?3 O( A
11.4 Adaptive Thresholding in Code Acquisition of Direct-
) Q; t  Q. O+ `7 i: s; c! _Sequence Spread Spectrum Signals 648
# _8 K! m% ]0 ]11.4.1 Pseudonoise or Direct Sequences 6497 s3 p& U/ h& G& f/ e7 S8 A0 z
11.4.2 Direct-Sequence Spread Spectrum Modulation 6529 V8 [; v4 q5 {9 n
11.4.3 Frequency-Hopped Spread Spectrum Modulation 655
3 X2 }8 V; a3 H. Z0 o# |11.4.4 Synchronization of Spread Spectrum Systems 655
  g; {( g! [/ v  s4 b, L/ {0 K11.4.5 Adaptive Thresholding with False Alarm Constraint 6597 H" s& N: |  z- W/ m5 O: O7 m
11.5 Summary 660
' d4 g/ ]" ?! I( yReferences 661
' J& c8 G$ J2 n) H) uChapter 12 Distributed CFAR Detection 665
" ]8 }* N8 f! s( t/ `, |12.1 Introduction 665& G+ t0 U- B9 }8 G
12.2 Distributed CA-CFAR Detection 666! K% P- T  ?' V; ?4 d
12.3 Further Results 6703 b1 V) p* D$ k7 ]$ q' B$ O
12.4 Summary 671
" A1 m' F( i" }! lReferences 672
6 y+ c+ ~+ {9 {/ I/ xAppendix 675
0 [- O$ O% @! [5 v( dAbout the Author 683/ e8 a. r; Y/ T* {6 I. W3 F4 B
Index 685) n2 T+ [, v# K' ?0 u

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 支持!支持! 反对!反对!

214

主题

642

帖子

1658

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
1658
2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德
% A% c1 z) ^- n; {6 }
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

巢课

技术风云榜

关于我们|手机版|EDA365 ( 粤ICP备18020198号 )

GMT+8, 2025-4-19 06:32 , Processed in 0.060023 second(s), 34 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表