那么,是谁在「扭曲」两性?
本期全媒派(ID:quanmeipai)综合皮尤研究中心以及 MIT 媒体实验室科学家 Joy Buolamwini 的研究发现,走近人脸识别下两性的比例失衡现象,一起探究:为何有时候,算法眼中的你处在可男可女的模糊地带?进一步讲,性别之外还有哪些偏见?为了应对这种状况,我们可以做些什么?
人脸识别下的性别失衡
Joy 表示,现实世界中的脸部识别要比实验检测更为复杂和困难,他们建立的基准数据集也并非完全经受得住考验,「但这就好比跑步比赛,在基准测试中的出色表现,起码能保证你不会刚起步就摔倒。」
即便在同样的基准下,面部识别系统的准确度数字可能也会发生变化。人工智能并不完美。在这种情况下,通过提供置信度给用户更具体的判断信息是一个有用的做法。
面部识别技术已经被广泛地应用在大规模监视、人工智能武器化和更多的执法环境中。但是,这项强大的技术是在没有得到充分监督的情况下,快速发展着。
为了减少对面部识别技术的滥用,算法正义联盟 (Algorithmic Justice League) 和隐私与技术中心 (Center on Privacy & Technology) 发起了「安全面孔承诺」(Safe Face Pledge) 活动。在目前,包括亚马逊在内的很多科技公司尚未加入这一承诺。「根据我们的研究,贸然向执法部门或者政府机构出售面部识别系统将是不负责任的。」作为算法正义联盟创始人之一的 Joy 希望,在未来,更多的机构能加入到「安全面孔承诺」,能够负责任地、符合道义地为面部分析技术的发展付出行动。
毕竟,算法偏见的背后,其实是我们人类自己的偏见。
参考链接:
1.https://www.journalism.org/2019/05/23/men-appear-twice-as-often-as-women-in-news-photos-on-facebook/
2.https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/
3.https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced