找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

巢课
电巢直播8月计划
查看: 59|回复: 1
打印 上一主题 下一主题

Matrix Analysis

[复制链接]

169

主题

582

帖子

1242

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
1242
跳转到指定楼层
1#
发表于 2017-1-10 14:12 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Table of Contents
6 i# N6 `* g; C) x8 m/ q 1 Preface, W/ V4 D) x8 A$ f) e* _
1.1 Preface to Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
4 A# v, q/ n6 n" Q7 K9 r5 s6 d( q 2 Matrix Methods for Electrical Systems
/ I$ i3 |# Y  m1 e% H8 [" p# ~ 2.1 Nerve Fibers and the Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Y0 U1 f7 g8 M& T- e  [9 r 2.2 CAAM 335 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15* c  {. a! h+ T- e0 R% A
3 Matrix Methods for Mechanical Systems
/ n! L9 n) I* f" v2 Q# t: I4 A 3.1 A Uniaxial Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
0 L+ d7 Z4 X7 `& | 3.2 A Small Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 M# M4 m% h+ u& k8 `% w6 H
3.3 The General Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
+ {* m* O' t8 T 3.4 CAAM 335 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
! g. Q3 Z+ Q! n 4 The Fundamental Subspaces" e2 S; {/ x) |
4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31. u' U" @; ^" }# ~! p
4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
7 _+ d9 L# j, X/ @0 c 4.3 The Null and Column Spaces: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
/ g" q- F7 B, u( N 4.4 Left Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 N5 t6 o; M# X- V
4.5 Row Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 R  L% V0 h* {7 P1 `
4.6 Exercises: Columns and Null Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1 H: @6 P5 N$ Q6 _ 4.7 Appendices/Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
* _/ \! k5 ]+ E' U0 O! v  G 5 Least Squares' X3 A% R, W0 s* T
5.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
% |$ n* }& I7 A+ B- v5 t9 i 6 Matrix Methods for Dynamical Systems9 s- I) c; [- a0 f9 p
6.1 Nerve Fibers and the Dynamic Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
/ K9 h0 I, ]& z* ?) t 6.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2 d9 m/ @  P/ O7 Y* l6 B) D" @/ C! ^ 6.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 I& D" V$ X1 U 6.4 The Backward-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
$ A& @2 O9 T: R/ \8 C3 W0 T 6.5 Exercises: Matrix Methods for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
" Q: e. d; V5 d5 Y* I 6.6 Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 }, G$ c. ~4 i3 i8 s5 ?! l) S, e0 u
7 Complex Analysis 10 Q7 ^& r- u* E4 V" h: i
7.1 Complex Numbers, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
% m' o4 a2 W+ ?3 c3 B9 D  B 7.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75' r* V) g; d& u9 t0 f2 |7 H
7.3 Complex Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9 e6 `% x$ x/ R" ?; i6 I) k 7.4 Exercises: Complex Numbers, Vectors, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 ]0 h. y' |! {3 p7 m Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7 A7 @8 `  k* ~ 8 Complex Analysis 2
, S3 v3 N* p! S5 V: v 8.1 Cauchy's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 U! T! Z" O* p6 R! u
8.2 Cauchy's Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88; ?1 o" Q  f" @7 l
8.3 The Inverse Laplace Transform: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92( x* c/ s' A9 @9 J2 s6 L) O
8.4 Exercises: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932 X/ ^) I  t/ \' v
9 The Eigenvalue Problem1 [" v5 u+ ~0 Y. w
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 i" r3 H$ a3 m' k' P/ O( x% ]* F
9.2 The Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 l# i) N8 \  r% X2 z# S5 |
9.3 The Partial Fraction Expansion of the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97: l8 \/ W& y/ e, r2 J4 k
9.4 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1002 L$ ^% S6 h2 c6 F
iv/ C, e' n9 S$ D  ?( A, _3 [) W7 a
9.5 The Eigenvalue Problem: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
: ]% a, b+ q4 S* c! S8 F 9.6 The Eigenvalue Problem: Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 k: A# }% u& V
10 The Symmetric Eigenvalue Problem4 }( f; A2 d1 q) ^/ }+ |' K2 n
10.1 The Spectral Representation of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
: L( t5 }5 O0 @' k( W! x 10.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
" m9 T+ n( n! E 10.3 The Diagonalization of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2 b# U5 s2 f0 o( F3 Z 11 The Matrix Exponential
- X- m9 Q) f9 b5 L. U' d# _. l 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
& ~& y( H7 @; @- S 11.2 The Matrix Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
. p" `' ?- L. d8 q 11.3 The Matrix Exponential as a Sum of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8 n  U0 e. v5 h+ e- @/ u# \ 11.4 The Matrix Exponential via the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1168 _* G2 w: O" h' y
11.5 The Matrix Exponential via Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
0 p" k8 H9 e$ z" M5 V, n6 W 11.6 The Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216 O4 P' C: B9 i' k4 @# G7 H
12 Singular Value Decomposition
: {1 E5 s1 f- k- W: c& M 12.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
$ ?$ d3 C: n6 Y3 Q$ j Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1 h* F  J+ C; E# ] Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346 {! [" B; m9 M0 a
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365 s) |4 {1 [$ C) K) }/ o6 p5 K
Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139/ Y. K0 q$ K' O' I8 Q& ^3 o# V
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 支持!支持! 反对!反对!

169

主题

582

帖子

1242

积分

四级会员(40)

Rank: 4Rank: 4Rank: 4Rank: 4

积分
1242
2#
 楼主| 发表于 2017-1-10 14:13 | 只看该作者
~~~

Matrix Analysis.pdf

1.11 MB, 下载次数: 1, 下载积分: 威望 -5

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

巢课

技术风云榜

关于我们|手机版|EDA365 ( 粤ICP备18020198号 )

GMT+8, 2025-4-18 04:59 , Processed in 0.057936 second(s), 34 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表