|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction5 t, Q* ]( T7 {- n3 p. t% C4 M
1.1 Photonics: the countless possibilities of light propagation0 A p- o' o5 m% a M0 N% a
1.2 Modelling photonics
) }6 [: l/ \1 n2 Full-vectorial Beam Propagation Method' F) l6 o- S" E, a
2.1 Introduction
$ j( c8 `# ?$ E+ T8 I2.2 Overview of the beam propagation methods8 o% s1 _' v7 H/ B: v
2.3 Maxwell’s Equations9 n. E/ C& M, j
2.4 Magnetic field formulation of the wave equation
1 I! K; R* C- j: v$ i2 J7 A& y2.5 Electric field formulation of the wave equation
g# F, _ M8 Z6 ]0 L$ t+ r2.6 Perfectly-Matched Layer
# C* E( a% j3 K2.7 Finite Element Analysis
" G( X6 x2 y4 s! B2.8 Derivation of BPM Equations
# m) h/ m$ X2 s. X; J0 s2.9 Imaginary-Distance BPM: Mode Solver
+ N1 Z4 }4 h8 ~ H$ E3 Assessment of Full-Vectorial Beam Propagation Method/ z8 i3 X5 ^! @( a; t, w
3.1 Introduction
7 d) R/ J( P( h9 \9 g3.2 Analysis of Rectangular waveguide# `6 N$ [7 V8 S7 @5 C
3.3 Photonic Crystal Fibre
2 S0 |: Y1 N' M2 [/ I. z7 F3.4 Liquid Crystal Based Photonic Crystal Fibre$ S# x" n" \# d) g) p: w. o, L
3.5 Electro-optical Modulators9 `9 x) ~) A4 J& F; {8 g
3.6 Switches
$ H. d' X. }" E$ E/ f8 F+ i4 Bidirectional Beam Propagation Method
8 T4 I4 V9 F7 L6 o6 L4.1 Introduction' C% p3 C% m6 m4 ~1 @
4.2 Optical Waveguide Discontinuity Problem
/ Q3 j! e1 q8 w4 X: {8 v7 H! l4.3 Finite element analysis of discontinuity problems
. g* q# a$ {6 }4 \4.4 Derivation of Finite Element Matrices9 M* S0 f2 g2 ?& s
4.5 Application of Taylor’s Series Expansion
7 s: F' t8 [4 H% X; c4.6 Computation of Reflected, Transmitted and Radiation Waves
& A/ o6 k( D) z o: i3 D, @4.7 Optical fiber-facet problem2 O: Z) {& v4 R
4.8 Finite element analysis of optical fiber facets- H" K, w. ^# t) Q# N& D; v
4.9 Iterative analysis of multiple-discontinuities( N( G3 t$ }5 O" G7 n9 E
4.10 Numerical assessment0 d% t5 @: U6 T( }
5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment
9 k# C5 n- a3 A9 w4 o: G5.1 Introduction
% [# W$ ^7 c- c0 Z! k, K5.2 Maxwell's equations& e& y8 A0 B- w3 b4 L
5.3 Brief history of Finite Difference Time Domain (FDTD) Method
" y; p1 r! q9 a- l: ?! [5.4 Finite Difference Time Domain (FDTD) Method
3 P3 N* P4 U. T% t: U5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit
% f6 B+ b1 r9 A+ ~5.6 Complex-Envelope ADI-FDTD (CE-ADI-
3 n" ?1 M# D, Q9 c* s, V& r4 v5.7 Perfectly Matched Layer (PML) Boundary Conditions9 o3 d/ |) V& h3 X/ b/ F+ s# a
5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
9 Z% V( L8 x: n/ k) K9 p5.9 PML Parameters
. |) T/ | w9 j) j5 Z V8 \5.10 PML Boundary Conditions for CE-ADI-FDTD5 C5 L7 ]/ Q1 p$ {( @9 D
5.11 PhC Resonant Cavities
' a0 Q( d0 q' \4 t$ A8 d6 Z) p5 ~5.12 5x5 Rectangular Lattice PhC Cavity
5 j6 C, z8 _* A) C. C, C5.13 Triangular Lattice PhC Cavity7 t# H; v5 F0 u- o- W
5.14 Wavelength Division Multiplexing
$ C1 A% f* y$ j6 T5.15 Conclusions
9 M! R) w% }- h3 ~; ~7 b1 S% B! T6. Finite Volume time Domain (FVTD) Method5 {3 h/ y3 F2 J
6.1 Introduction
8 J: N( \' `: `3 T6.2 Numerical analysis
. F! ?1 T/ z& e: D' m6.3 UPWIND Scheme for the Calculation- {, m6 p/ [3 w, j/ w# s
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
0 h; E( Q& |: A! S0 y& t+ I6.5 2D Formulation of the FVTD Method
4 H" M# ~2 t% B8 j( x& Q6.6 Boundary Conditions
; @' j2 G- _# u6.7 Nonlinear Optics% j: S/ c L: C5 U
6.8 Nonlinear Optical Interactions* \5 x* i7 }4 K
6.9 Extension of the FDTD Method to Nonlinear Problems9 k+ Y2 M2 P+ U
6.10 Extension of the FVTD Method to Nonlinear Problems
& ~' b4 e' P% S6.11 Conclusions
. K- R+ I3 ~7 s- `" V7 Numerical Analysis of Linear and Nonlinear PhC Based Devices
% Y* ~/ F0 _7 G- I" e2 t7.1 Introduction p$ b: M* S* _5 w0 u: Q# g
7.2 FVTD Method Assessment: PhC Cavity
3 w+ e2 o- Y l+ @2 z8 M& `8 G7.3 FVTD Method Assessment: PhC Waveguide
) }' v5 ^/ G9 x3 t( a7.4 FVTD Method Assessment: PBG T-Branch
2 Y4 Z$ c4 O0 L; [7.5 PhC Multimode Resonant Cavity6 H: F6 h/ w1 k& n( n
7.6 FDTD Analysis of Nonlinear Devices- @3 U+ r; ^, w' R5 ?2 n3 [5 C
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires4 l% ?3 F8 G- z* D' B9 u; T, b
7.8 Conclusions- ~1 G5 c$ |7 O4 x _: G, f
8 Multiresolution Time Domain* q' H" J5 \: Z
8.1 Introduction
# z! P2 V% \. d+ {" d. o8.2 MRTD basics" g M$ K9 g+ J) n5 Z; A: t& R
8.3 MRTD update scheme
. r- I, ^, W" X; ?. h) V8.4 Scaling-MRTD8 O. o N: J& m% c
8.5 Conclusions
X1 @) l7 e7 i1 `) x9 MRTD Analysis of PhC-Devices
+ l, G/ g! g7 H5 L0 z9.1 Introduction
) z4 X) v( i( v( a0 q l6 _9.2 UPML-MRTD: test and code validation
; v5 i& s f3 Z# C( ?+ F6 k9.3 MRTD vs FDTD for the analysis of linear photonic crystals! F* Z8 ^5 T' ]' z4 y2 C) i7 Y( \
9.4 Conclusions
. b8 \5 H) m9 u6 E- ^" j10 MRTD Analysis of SHG PhC-Devices0 k& e C# `% s/ m! C6 u8 p
10.1 Introduction7 o0 ?1 N- E6 Z) B6 X' O6 @- o1 @
10.2 Second harmonic generation in optics
3 N' `5 ~: s4 J8 M' l+ l1 [10.3 Extended S-MRTD for SHG analysis+ G& m6 ^: p" q: C7 ~# ]2 g1 S
10.4 SHG in PhC-waveguide- T4 z, w2 \2 t( H0 _4 H+ Z
10.5 Selective SHG in compound PhC-based structures
( @! K, G- q* v. R10.6 New design for selective SHG: PhC-microcavities coupling K3 F! S% F% {
10.7 Conclusions0 {. c% G5 ^. K$ Q2 O& h
11 Dispersive Nonlinear MRTD for SHG Applications
& e$ x1 a1 x8 v( z! m1 Q% q Y11.1 Introduction
( g3 `# \. t* x! O11.2 Dispersion analysis" J9 |& [9 }$ f& q- o
11.3 SHG-MRTD scheme for dispersive materials; }: W' h3 d' k2 L# m4 F
11.4 Simulation results
5 N- T' A5 Q. ~4 a11.5 Conclusions |
|