|
EDA365欢迎您!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction0 o3 P, K1 D4 ^! Q. r& e
1.1 Photonics: the countless possibilities of light propagation+ W. P. t: q! Y/ g
1.2 Modelling photonics
2 j) ~' k9 j4 j, J8 i% c3 ~; k2 Full-vectorial Beam Propagation Method: m- O; f9 A7 [$ o
2.1 Introduction
8 D `1 j3 a; w; g2 Z3 |4 z" H: u2.2 Overview of the beam propagation methods
) n( a5 a3 X S. w# X2.3 Maxwell’s Equations
5 t9 `0 X1 V+ N; H; x2.4 Magnetic field formulation of the wave equation# s% E2 c/ I+ t) x) s) \
2.5 Electric field formulation of the wave equation
( }% w6 ~, x: T$ }0 x3 Q( _2.6 Perfectly-Matched Layer
: ^+ G" v& P& b& F& k( c/ w3 F3 O2.7 Finite Element Analysis
) t+ q, c9 J3 v5 }# j2.8 Derivation of BPM Equations
2 l& A8 l$ h4 S L6 h: t2.9 Imaginary-Distance BPM: Mode Solver
! {$ V1 G7 x8 C( a2 x3 Assessment of Full-Vectorial Beam Propagation Method" u' b2 \- S% q3 { \
3.1 Introduction1 ~" I/ q$ M1 b) D8 B' e) E) } B' A" i
3.2 Analysis of Rectangular waveguide6 [( |* @4 Q) J" ]' t) E# i
3.3 Photonic Crystal Fibre
; W S; s2 F) A$ k$ F8 j3 y- _3.4 Liquid Crystal Based Photonic Crystal Fibre' k. N$ J4 J! o ]0 I/ ]) u z
3.5 Electro-optical Modulators: c8 i6 R- T4 c5 R) z0 {
3.6 Switches
7 I3 o9 Y; P' ]4 Bidirectional Beam Propagation Method5 ?( }( H, ?' [' F5 c7 {
4.1 Introduction
* @! N* a0 M; g; F4.2 Optical Waveguide Discontinuity Problem
- H5 F' e+ G5 d2 l7 J( E4.3 Finite element analysis of discontinuity problems
8 X7 O# j4 k' x' {% d* l6 V4.4 Derivation of Finite Element Matrices
$ ^9 p' X% k Q# L4.5 Application of Taylor’s Series Expansion8 T4 I! m0 g! H- ^
4.6 Computation of Reflected, Transmitted and Radiation Waves5 X' I5 z$ ~2 I5 r5 y: j
4.7 Optical fiber-facet problem1 @) W& U/ Y, b5 G% p1 C0 L
4.8 Finite element analysis of optical fiber facets$ i6 d) D; I2 e" R
4.9 Iterative analysis of multiple-discontinuities
* K. G" r$ U* i3 C/ Q* ]4.10 Numerical assessment
5 c, o" j F. @7 s5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment1 x/ u. N- B5 \- e3 J; S0 V
5.1 Introduction
' M: H6 X. s* p3 l) D3 y$ i5.2 Maxwell's equations
4 @8 o9 y- O4 U5.3 Brief history of Finite Difference Time Domain (FDTD) Method
! L3 G @ P8 l6 |5.4 Finite Difference Time Domain (FDTD) Method
& l" @" l8 v& f' P5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit
' I4 W' j, L; {7 f5 K* }1 ^1 f5.6 Complex-Envelope ADI-FDTD (CE-ADI-& X: M: ~1 N5 m9 X+ `
5.7 Perfectly Matched Layer (PML) Boundary Conditions
2 Z( ?7 F# W9 H* ~: L7 V5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
, \1 c$ P0 x4 K W+ G" P* O; \5.9 PML Parameters
6 z+ u5 L$ F9 B4 t7 L. N5.10 PML Boundary Conditions for CE-ADI-FDTD
- a5 k7 [9 V: K5.11 PhC Resonant Cavities% X ~4 ~/ i% I: M& s: j
5.12 5x5 Rectangular Lattice PhC Cavity: f. U: \ z+ g# i: J+ q
5.13 Triangular Lattice PhC Cavity. L# ]' n% ?8 X' N* \( i N& k$ U4 E
5.14 Wavelength Division Multiplexing
# c1 Q, n6 M# X6 j8 ?% \8 z5.15 Conclusions
& n8 Y+ N+ Z y# k- b6 ~- _& b6. Finite Volume time Domain (FVTD) Method
% I' _0 i; B8 }7 t6.1 Introduction. }* @( X! Q$ r
6.2 Numerical analysis5 m6 O6 w; `: W1 Z# k* }
6.3 UPWIND Scheme for the Calculation
$ n r* `0 X; u- A. ~6 S1 L6.4 NON-DIFFUSIVE Scheme for the Flux Calculation
# I, T0 f0 a+ L( T6.5 2D Formulation of the FVTD Method" u( f4 p6 K# S
6.6 Boundary Conditions
+ k7 `1 x6 S0 k8 J6.7 Nonlinear Optics
% X$ U- T' i5 A; I1 o6.8 Nonlinear Optical Interactions- C8 X a" R! ~ n
6.9 Extension of the FDTD Method to Nonlinear Problems3 C( n( f- n6 D) F) M
6.10 Extension of the FVTD Method to Nonlinear Problems
" p& r! a6 l% k6.11 Conclusions, P4 Y1 y/ b" u+ y! d+ u
7 Numerical Analysis of Linear and Nonlinear PhC Based Devices) G4 t3 {, f- T+ v6 [
7.1 Introduction
7 v2 {7 X6 b( c# D. Z; Y. J7.2 FVTD Method Assessment: PhC Cavity9 O7 P, ]$ _. A1 n. Y
7.3 FVTD Method Assessment: PhC Waveguide, p8 T3 `3 G! r2 g$ Z( \; B
7.4 FVTD Method Assessment: PBG T-Branch
* g0 Z3 |. H+ s' {, }7.5 PhC Multimode Resonant Cavity
^ k6 V3 s" U3 f5 S7.6 FDTD Analysis of Nonlinear Devices/ Y9 [3 k! Z: d" ~) S
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
/ J; y$ h9 N% k7 e1 G8 [7.8 Conclusions" ^# D$ q/ |! x& p! a, @- V- h
8 Multiresolution Time Domain% i- y0 q8 ~9 S0 I& f
8.1 Introduction
4 ]5 h0 B" x" h8.2 MRTD basics/ S: c! X& X! \+ H, d1 ^* {. A6 _
8.3 MRTD update scheme( n( O7 i8 h$ Q, ^8 S
8.4 Scaling-MRTD5 }7 j6 f9 U" |5 T
8.5 Conclusions0 @2 V6 H; Q9 r$ b/ x- R0 j
9 MRTD Analysis of PhC-Devices" z; p6 |/ C* J- C" y" T1 i1 T
9.1 Introduction
& v7 K/ K7 ~% j, d/ U9 b6 h6 `9.2 UPML-MRTD: test and code validation5 v( P M7 w% E6 _) n: n
9.3 MRTD vs FDTD for the analysis of linear photonic crystals' b- c! t3 L, @. n1 U: n" e0 S% ^
9.4 Conclusions- t3 q9 n+ J W& e# D9 p
10 MRTD Analysis of SHG PhC-Devices2 @# E+ E( u# n; D
10.1 Introduction
0 V" D# W& _* C/ j6 q! V: B10.2 Second harmonic generation in optics
! z9 X4 O) G; w, o# L10.3 Extended S-MRTD for SHG analysis
% x% C, X. h5 k1 Z$ Z+ _+ N10.4 SHG in PhC-waveguide
3 k3 N3 K$ H; ]9 z- X10.5 Selective SHG in compound PhC-based structures
% H/ @$ W9 N) o1 L6 y( l6 S10.6 New design for selective SHG: PhC-microcavities coupling" n/ r$ ?: J) N8 u) d9 g/ a
10.7 Conclusions
" T0 A' G0 Y3 S8 h2 E$ J& h: ^11 Dispersive Nonlinear MRTD for SHG Applications
* v" t: U1 a9 O g9 ]" M11.1 Introduction. k8 _) _" u$ T9 _1 t' ~1 d
11.2 Dispersion analysis/ U9 ?& {8 b4 _# a$ O0 T
11.3 SHG-MRTD scheme for dispersive materials
- a$ [ {+ D! M11.4 Simulation results$ q2 T# G* ?2 r) s& ?( u
11.5 Conclusions |
|